

UNIVERSIDAD LAICA VICENTE ROCAFUERTE DE GUAYAQUIL FACULTAD DE INGENIERÍA, INDUSTRIA Y CONSTRUCCIÓN CARRERA DE INGENIERÍA CIVIL

PROYECTO DE INVESTIGACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

TEMA

DISEÑO DE EDIFICACIONES EN HORMIGÓN ARMADO REGULARES CON SISTEMAS DE PÓRTICOS RESISTENTES A MOMENTOS, SUS EFECTOS DE LA MODELACIÓN DE LAS LOSAS Y COMPORTAMIENTO SISMO RESISTENTES

TUTOR

Mgtr. Ing. Civil ALFREDO ALONSO BARRAGÁN SUBÍA

AUTORES

MILTON GEOVANNY ALFONZO CÓRDOVA

DANIEL FABRICIO BARRIONUEVO DE LA ROSA

GUAYAQUIL

2023

REPOSITORIO NACIONAL EN CIENCIA Y TECNOLOGÍA

FICHA DE REGISTRO DE TESIS

TÍTULO Y SUBTÍTULO:

Diseño de edificaciones en hormigón armado regulares con sistemas de pórticos resistentes a momentos, sus efectos de la modelación de las losas y comportamiento sismo resistentes.

AUTOR/ES:	REVISORES O TUTORES:
Alfonzo Córdova Milton Geovanny	Mgtr. Ing. Civil Alfredo Alonso Barragán Subía
Barrionuevo de la Rosa Daniel	
Fabricio	
INSTITUCIÓN:	Grado obtenido:
Universidad Laica Vicente	Tercer nivel de grado
Rocafuerte de Guayaquil	
FACULTAD:	CARRERA:
FACULTAD DE INGENIERÍA,	Ingeniería Civil
INDUSTRIA Y CONSTRUCCIÓN	
FECHA DE PUBLICACIÓN:	N. DE PÁGS:
2023	128

ÁREAS TEMÁTICAS: Arquitectura y Construcción

PALABRAS CLAVE: Diseño estructural; hormigón; sismo; frecuencia; software

RESUMEN:

El presente proyecto se basó en el diseño de edificaciones en hormigón armado regulares con sistemas de pórticos resistentes a momentos, sus efectos de la modelación de las losas y comportamiento sismo resistentes, en el cual se implementó las normativas NEC-SE-HM, NEC-SE-CG, NEC-SE-DS, ACI 318S-19. Haciendo referencia a la cuarta normativa antes mencionada, se diseñó una edificación regular tanto en elevación y planta.

Para el predimensionamiento de los elementos estructurales se optó por utilizar indicaciones otorgadas por el ACI 318 S-19.

Esta investigación demuestra que, para modelar una edificación en un software de análisis estructural, es óptimo considerar la masa y rigidez de las losas, ya que gracias a ese análisis se obtuvo resultados totalmente reales tanto en periodos, derivas, reacciones y cuantías de acero. Esto brindo secciones de los elementos adecuadas en la cual las cuantías de acero son reducidas al momento de comprar el mismo análisis sin rigidez en las losas, por lo tanto, esto indica que reducirá costos.

El aporte que tuvo la investigación indica como modelar una edificación y está basado en el modelamiento que se aplica dentro del Ecuador ya que saben considerar las losas como un diafragma rígido sin su rigidez, arrojando datos nos exactos. Cabe recalcar que en los capítulos de la NEC especifica cómo realizar un predimensionamiento y habla muy someramente del modelamiento en un software de análisis estructural es por eso que también aporta con indicadores específicos para realizar el modelamiento y análisis de una estructura.

N. DE REGISTRO (en base de	N. DE CLASIFICAC	ION:
datos):		
uatos).		
,		
DIRECCIÓN URL (tesis en la web)	:	
ADJUNTO PDF:	SI v	NO
ADJUNIO I DI	SI X	110
CONTACTO CON AUTOR/ES:	Teléfono:	E-mail:
Alfonzo Córdova Milton Geovanny	+593 99 858 9227	malfonzoc@ulvr.edu.ec
•		
Barrionuevo de la Rosa Daniel	+593 99 104 0576	dbarrionuevod@ulvr.edu.
	1575 77 104 0570	dominonacyou e urvi.cuu.
Fabricio		<u>ec</u>

CONTACTO	EN L	A Mgtr. Ing. Milton Gabriel Andrade Laborde
INSTITUCIÓN:		Decano de la Faculta de Ingeniería, Industria y Construcción.
		Teléfono: (04) 25 96 500 Ext. 210
		E-mail: mandradel@ulvr.edu.ec
		Mgtr. Ing. Alexis Wladimir Valle Benítez
		Director Ingeniería Civil, Facultad de Ingeniería, Industria y Construcción.
		Teléfono: (04) 25 96 500 Ext. 242
		E-mail: avalleb@ulvr.edu.ec

CERTIFICADO DE ORIGINALIDAD ACADÉMICA

DISEÑO DE EDIFICACIONES EN HORMIGÓN ARMADO REGULARES CON SISTEMAS DE PÓRTICOS RESISTENTES A MOMENTOS, SUS EFECTOS DE LA MODELACIÓN DE LAS LOSAS Y COMPORTAMIENTO SISMO RESISTENTES

BORRADOR DE TESIS	
INFORME DE ORIGINALIDAD	
7% The state of th	BAJOS DEL
FUENTES PRIMARIAS	
1 www.slideshare.net Fuente de Internet	3%
docplayer.es Fuente de Internet	1 %
3 www.dspace.uce.edu.ec Fuente de Internet	1 %
4 www.dspace.espol.edu.ec	1 %
dspace.ups.edu.ec Fuente de Internet	1%
Submitted to Universidad Laica Vicente Rocafuerte de Guayaquil Trabajo del estudiante	1%

Fecha de entrega: 23-ene-2023 10:52p.m. (UTC-0500)

Identificador de la entrega: 1998218050

Nombre del archivo: Tesis_final_1_turnitin.docx (14.72M)

Total de palabras: 9987 Total de caracteres: 52330

Mgtr. Ing. Alfredo Barragán S.

DECLARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS PATRIMONIALES

Los estudiantes egresados MILTON GEOVANNY ALFONZO CÓRDOVA y DANIEL

FABRICIO BARRIONUEVO DE LA ROSA, declaramos bajo juramento, que la autoría del presente proyecto de investigación, Diseño de edificaciones en hormigón armado

regulares con sistemas de pórticos resistentes a momentos, sus efectos de la

modelación de las losas y comportamiento sismo resistentes, corresponde totalmente a

los suscritos y nos responsabilizamos con los criterios y opiniones científicas que en el

mismo se declaran, como producto de la investigación realizada.

De la misma forma, cedemos los derechos patrimoniales y de titularidad a la Universidad

Laica VICENTE ROCAFUERTE de Guayaquil, según lo establece la normativa vigente.

Autor(es)

Firma:

MILTON GEOVANNY ALFONZO CÓDOVA

Melton Alfonzo C.

C.I. 0940727316

Firma:

DANIEL FABRICIO BARRIONUEVO DE LA ROSA

C.I. 0930499280

VI

CERTIFICACIÓN DE ACEPTACIÓN DEL TUTOR

En mi calidad de Tutor del Proyecto de Investigación Diseño de edificaciones en

hormigón armado regulares con sistemas de pórticos resistentes a momentos, sus

efectos de la modelación de las losas y comportamiento sismo resistentes, designado(a)

por el Consejo Directivo de la Facultad de Ingeniería, Industria y Construcción de la

Universidad Laica VICENTE ROCAFUERTE de Guayaquil.

CERTIFICO:

Haber dirigido, revisado y aprobado en todas sus partes el Proyecto de Investigación

titulado: Diseño de edificaciones en hormigón armado regulares con sistemas de

pórticos resistentes a momentos, sus efectos de la modelación de las losas v

comportamiento sismo resistentes, presentado por los estudiantes MILTON

GEOVANNY ALFONZO CÓRDOVA y DANIEL FABRICIO BARRIONUEVO DE

LA ROSA como requisito previo, para optar al Título de Ingeniero Civil, encontrándose

apto para su sustentación.

Firma:

ALFREDO ALONSO BARRAGÁN SUBÍA

Affred of wrather

C.C. 0925578817

VII

AGRADECIMIENTO

Agradezco a Dios Todopoderoso ya que me ha permitido seguir adelante con mi vida, siempre poniendo a Él delante de toda situación y adversidad vivida en esta etapa estudiantil, por haberme ayudado a culminar esta carrera tan anhelada, por brindarme sabiduría, paciencia y salud.

A mi querido padre quien me brindo su ayuda y esfuerzo, por ser mi ejemplo a seguir, por su incontable ayuda durante una etapa difícil, agradezco por los consejos que me brindo durante este tiempo y por guiarme a esta profesión tan maravillosa.

A mi querida madre por ser el pilar fundamental en mi vida y haberme dado la vida, por siempre estar en toda situación, por nunca dejar de confiar en mí, por sus oraciones incontables, por estar conmigo durante esta gran etapa de mi vida. Gracias nuevamente mis amados padres.

A mi querida esposa, quien me apoyo en toda decisión tomada y por haberme otorgado la felicidad de ser padre.

A mis hermanos por brindarme el apoyo incondicional.

A mi gran amigo Daniel Barrionuevo, quien me demostró el significado de la amistad y a todas mis grandes amistades formada durante esta carrera, quienes conformamos un grupo sólido de verdadera amistad.

Al Mgtr. Alfredo Alonso Barragán Subía, por ser nuestro guía del proyecto de investigación, por haber depositado su confianza e impartido su gran conocimiento con nosotros, permitiendo culminar con total profesionalismo esta investigación.

Y a todos los docentes de esta prestigiosa Institución por haber compartido sus conocimientos, para ser un gran profesional.

Milton Geovanny Alfonzo Córdova

AGRADECIMIENTO

A Dios por haberme brindado salud, fortaleza y sabiduría para poder alcanzar esta meta profesional, por estar en los momentos buenos y malos. Agradecerle por darme fuerzas cuando caía y levantarme.

A mis padres que supieron guiarme e impartirme cada uno de sus principios éticos y morales, por estar en los momentos difíciles, por darme sus consejos y siempre haciéndome ver que hay un gran futuro para mí. Gracias y mil veces gracias por apoyarme en todas las decisiones que he tomado y estar de manera indispensable en todo momento.

A mi novia por acompañarme en este proceso, brindarme su apoyo incondicional en cada paso que he dado en este proceso tanto en lo personal como en lo académico.

A mis hermanos por todos sus consejos y sobre todo ser una guía en vivir diario.

Al Mgtr. Alfredo Alonso Barragán Subía tutor del proyecto, quien con su conocimiento y confianza en nosotros nos llevó a culminar de forma profesional esta tesis y que siempre hay que tomar con absoluta responsabilidad, dedicación y profesionalismo cada investigación.

A cada uno de los docentes los cuales con sus conocimientos son importantes en la formación académica.

Daniel Fabricio Barrionuevo De La Rosa

DEDICATORIA

Dedico este proyecto a Dios y la Virgen María por haber brindado salud y permitir estar con las personas que amo, por darme la sabiduría necesaria durante toda la carrera profesional.

A mi padre el Ing. Milton Octavio Alfonzo Lucin, quien me supo guiar por el camino del bien y apoyar en todo momento, por ser mi gran ejemplo de superación e inspirarme a seguir con esta gran profesión.

A mi madre la Sra. Alexandra Isabel Córdova Ronquillo, por nunca faltarme un consejo de madre, por estar guiándome y apoyándome incondicionalmente, que desde pequeño siempre estuve incentivándome con el estudio, modales y actitudes buenas para la vida.

A mi esposa quien me acompaño durante esta etapa y creyó en mí. Por brindarme su cariño y comprensión durante todo lo vivido juntos.

A mi amada hija, quien desde que llego a mi vida, ha llenado de felicidad cada rato compartido con ella, quien con su alegría contagia a todo el mundo, por ser parte de este gran proceso, por ser el motor de inspiración y superación.

A mis hermanos por todos los consejos y cariño brindado.

A todo miembro de mi familia y amistades, quienes supieron estar en las adversidades y buenos momentos, para así obtener este gran título anhelado de Ingeniero Civil.

Milton Geovanny Alfonzo Córdova

DEDICATORIA

A mis padres, novia y hermanos que han sido el pilar fundamental para mi desarrollo académico apoyando de forma incondicional en cada paso que he tomado y sobre todo dándome siempre una mano en los momentos de caiga, teniendo fe en mí siempre.

A cada uno de mis familiares y amigos que estuvieron cuando más los necesite y poder dar este paso importante, el título de Ingeniero Civil.

Daniel Fabricio Barrionuevo De La Rosa

ÍNDICE GENERAL

INTRO	DUCCIÓN	1
CAPÍT	ULO I	2
1.1	Tema	2
1.2	Planteamiento del Problema	2
1.3	Formulación del Problema	3
1.4	Objetivo General	3
1.5	Objetivos Específicos	3
1.6	Hipótesis	3
1.7	Línea de investigación Institucional/Facultad	4
CAPÍT	ULO II	5
MARC	O TEÓRICO	5
2.1	Marco Teórico	5
2.2	Antecedentes del Problema	6
2.2	2.1. Línea de tiempo	6
2.2 15	Zonificación sísmica según la Norma Ecuatoriana de12	la Construcción NEC-
2.2	2.3. Coeficientes de perfil del suelo	13
2.2	2.4. Diseño estructural	15
2.2	2.5. Edificación	16
2.2	2.6. Hormigón Armado	16
2.2	2.7. Área Tributaria	16
2.2	2.8. Definiciones básicas de elementos estructurales	16
	2.2.8.1. Cimentaciones	17
	2.2.8.2. Columnas	18
	2.2.8.3. Vigas	18
	2.2.8.4. Losas	18
	2.2.8.5. Voladizos	18
2.2	2.9. Tipo de losas	19
	2.2.9.1. Losas Unidireccionales	19
	2.2.9.2. Losas Bidireccionales	19
2.2	2.10. Modelos de tipo de losa	20
	2.2.10.1. Losa Alivianada	20
	2.2.10.2. Losa Maciza	20

2.2.11.	Sistemas Estructurales	21
2.2.12.	Pórticos resistentes a momento	21
2.2.13.	Software de Diseño	22
2.2.14.	Elemento tipo Shell y Membrana	22
2.2.14	.1. Tipo Shell	23
2.2.14	.2. Tipo Membrana	23
2.2.15.	Definiciones Esenciales	23
2.2.15	.1. Peligrosidad Sísmica	23
2.2.15	.2. Periodo Fundamental Estructural	23
2.2.15	.3. Resistencia Lateral del Piso	24
2.2.15	.4. Respuesta Elástica	24
2.2.15	.5. Rigidez	24
2.2.15	.6. Rigidez Lateral del Piso	24
2.2.15	.7. Rigidez Efectiva	24
2.2.15	.8. Deriva de Piso	24
2.2.15	.9. Cortante Basal de Diseño	25
2.2.15	.10. Espectro de respuesta para Diseño	25
2.2.15	.11. Modos de Vibración de un Edificio	25
2.3 Marc	co Legal	26
CAPÍTULO I	П	27
METODOLO	GÍA DE LA INVESTIGACIÓN	27
3.1 Enfo	que de la investigación: (cuantitativo, cualitativo o mixto)	27
3.2 Alca	nce de la investigación: (Exploratorio, descriptivo o correlacional)	27
3.3 Técr	ica e instrumentos para obtener los datos:	27
3.4 Pobl	ación y muestra	28
3.5 Prese	entación y análisis de resultados	28
3.5.1	Procedimiento	28
3.5.2	Descripción de la edificación y planos	30
3.5.3	Predimensionamiento de losa	33
3.5.4	Análisis y estimación de cargas	35
3.5.4.1	Cargas Permanentes (muertas)	35
3.5.4.2	2 Cargas Vivas	36
3.5.5	Predimensionamiento de columnas	36
3.5.6	Predimensionamiento de vigas	40

3.5.7	Sec	eciones de elementos estructurales obtenidas por el prediseño	42
3.5.8	Esp	pectro de diseño elástico e inelástico	42
3.5.9	De	terminación de Cortante Basal de Diseño V.	47
3.6. N	Modela	miento de la estructura en ETABS	48
3.6.7	. De	finición de materiales e Ingreso de Secciones	48
3.6.8	. De	finición ejes y elevación de la estructura	53
3.6.9	. An	álisis de cargas en el software ETABS	54
3.7. A	Análisis	s y revisión del modelo matemático	54
3.7.1	. Ca	mbio de secciones de elementos estructurales	54
3.7.2	. Est	ructura considerando rigidez en su losa	57
3.7	7.2.1.	Periodo de la estructura	57
3.7	7.2.2.	Derivas de la estructura	58
3.7	7.2.3.	Reacciones	59
3.7	7.2.4.	Cuantía longitudinal de vigas	60
3.7	7.2.5.	Cuantías longitudinales en columnas	62
3.7	7.2.6.	Cuantía transversal de vigas	65
3.7	7.2.7.	Cuantía transversal en columna	67
3.7.3	. Est	ructura sin considerar rigidez en sus losas	70
3.7	7.3.1.	Periodo de la estructura sin rigidez	70
3.7	7.3.2.	Derivas de la estructura sin rigidez	71
3.7	7.3.3.	Reacciones sin rigidez	72
3.7	7.3.4.	Cuantía longitudinal de viga	73
3.7	7.3.5.	Cuantía longitud columna	75
3.7	7.3.6.	Cuantía transversal viga	78
3.7	7.3.7.	Cuantía transversal columna	80
3.7.4	. Est	ructura corregida en su masa sin considerar su rigidez en sus losas	83
3.7	7.4.1.	Periodo de la estructura corregida	83
3.7	7.4.2.	Deriva de la estructura corregida	84
3.7	7.4.3.	Reacciones de la estructura corregida	85
3.7	7.4.4.	Cuantía longitudinal de vigas	86
3.7	7.4.5.	Cuantía longitudinal de columnas	88
3.7	7.4.6.	Cuantía transversal de vigas	91
3.7	7.4.7.	Cuantía transversal de columnas	93
3.8.	Compai	ración de Datos	96

	3.8.1.	Comparación de periodos en los tres modelamientos	96
	3.8.2.	Comparación de derivas en los tres modelamientos	97
	3.8.3.	Comparación de Cuantías longitudinal de viga en los tres modelamientos	98
	3.8.4.	Comparación de Cuantías Transversal de viga en los tres modelamientos	100
	3.8.5.	Comparación de Cuantías longitudinal de columnas de los modelamientos	103
C	ONCLUS	SIONES	105
R	ECOME	NDACIONES	106
B	IBLIOGF	RAFÍA	107

ÍNDICE DE TABLAS

Tabla 1. Línea de investigación institucional ULVR	4
Tabla 2. Valores del Factor Z, según su zona sísmica	13
Tabla 3. Fa: Coeficiente de amplificación de suelo en la zona de período corto	
Tabla 4. Fd: amplificación de las ordenadas del espectro elástico de respues	ta de
desplazamientos para diseño en roca	14
Tabla 5. Fs: Comportamiento no lineal de los suelos	
Tabla 6. Losa alivianada	
Tabla 7. Carga Muerta: Pesos de los materiales	35
Tabla 8. Carga Viva: Sobrecarga mínimas	36
Tabla 9 . Prediseño de columnas (50x50 cm)	39
Tabla 10. Prediseño de columnas (40x40 cm)	40
Tabla 11 . Secciones definidas por el prediseño	42
Tabla 12. Tipo de suelo y factores de sitio	43
Tabla 13. Espectro elástico y espectro inelástico	46
Tabla 14. Cambios de secciones de vigas por el modelamiento en ETABS	55
Tabla 15. Periodos de Vibración y Frecuencias con Rigidez	57
Tabla 16. Derivas con Rigidez	58
Tabla 17. Reacciones con Rigidez	
Tabla 18. Cuantía longitudinal con rigidez vigas Nivel 5	
Tabla 19. Cuantía longitudinal con rigidez vigas Nivel 4	60
Tabla 20. Cuantía longitudinal con rigidez vigas Nivel 3	
Tabla 21. Cuantía longitudinal con rigidez vigas Nivel 2	
Tabla 22. Cuantía longitudinal con rigidez vigas Nivel 1	
Tabla 23. Cuantía Longitudinal en columnas con rigidez Nivel 5	
Tabla 24. Cuantía Longitudinal en columnas con rigidez Nivel 4	
Tabla 25. Cuantía Longitudinal en columnas con rigidez Nivel 3	
Tabla 26. Cuantía Longitudinal en columnas con rigidez Nivel 2	
Tabla 27. Cuantía Longitudinal en columnas con rigidez Nivel 1	
Tabla 28. Cuantías Transversales con rigidez vigas Nivel 5	
Tabla 29. Cuantías Transversales con rigidez vigas Nivel 4	
Tabla 30. Cuantías Transversales con rigidez vigas Nivel 3	66
Tabla 31. Cuantías Transversales con rigidez vigas Nivel 2	
Tabla 32. Cuantías Transversales con rigidez vigas Nivel 1	
Tabla 33. Cuantía transversal de columnas con rigidez Nivel 5	
Tabla 34. Cuantía transversal de columnas con rigidez Nivel 4	
Tabla 35. Cuantía transversal de columnas con rigidez Nivel 3	
Tabla 36. Cuantía transversal de columnas con rigidez Nivel 2	
Tabla 37. Cuantía transversal de columnas con rigidez Nivel 1	
Tabla 38. Periodos de Vibración y Frecuencias sin Rigidez	
Tabla 39. Derivas sin Rigidez	
Tabla 40. Reacciones sin Rigidez	
Tabla 41. Cuantía Longitudinal sin rigidez vigas Nivel 5	
Tabla 42. Cuantía Longitudinal sin rigidez vigas Nivel 4	73

Tabla 43.	Cuantía Longitudinal sin rigidez vigas Nivel 3	74
	Cuantía Longitudinal sin rigidez vigas Nivel 2	
	Cuantía Longitudinal sin rigidez vigas Nivel 1	
Tabla 46.	Cuantía Longitudinal en columna sin rigidez Nivel 5	75
	Cuantía Longitudinal en columna sin rigidez Nivel 4	
Tabla 48.	Cuantía Longitudinal en columna sin rigidez Nivel 3	76
Tabla 49.	Cuantía Longitudinal en columna sin rigidez Nivel 2	77
Tabla 50.	Cuantía Longitudinal en columna sin rigidez Nivel 1	77
	Cuantía Transversal sin rigidez vigas Nivel 5	
	Cuantía Transversal sin rigidez vigas Nivel 4	
	Cuantía Transversal sin rigidez vigas Nivel 3	
	Cuantía Transversal sin rigidez vigas Nivel 2	
Tabla 55.	Cuantía Transversal sin rigidez vigas Nivel 1	80
Tabla 56.	Cuantía transversal de columnas sin rigidez Nivel 5	80
	Cuantía transversal de columnas sin rigidez Nivel 4	
	Cuantía transversal de columnas sin rigidez Nivel 3	
	Cuantía transversal de columnas sin rigidez Nivel 2	
	Cuantía transversal de columnas sin rigidez Nivel 1	
	Periodos de Vibración y Frecuencias del modelo corregido	
	Derivas del modelo corregido	
	Reacciones sin Rigidez	
	Cuantía Longitudinal en vigas de la estructura corregida Nivel 5	
	Cuantía Longitudinal en vigas de la estructura corregida Nivel 4	
	Cuantía Longitudinal en vigas de la estructura corregida Nivel 3	
	Cuantía Longitudinal en vigas de la estructura corregida Nivel 2	
	Cuantía Longitudinal en vigas de la estructura corregida Nivel 1	
	Cuantía Longitudinal en columna de la estructura corregida Nivel 5	
	Cuantía Longitudinal en columna de la estructura corregida Nivel 4	
	Cuantía Longitudinal en columna de la estructura corregida Nivel 3	
	Cuantía Longitudinal en columna de la estructura corregida Nivel 2	
	Cuantía Longitudinal en columna de la estructura corregida Nivel 1	
	Cuantía Transversal de la estructura corregida vigas Nivel 5	
	Cuantía Transversal de la estructura corregida vigas Nivel 4 Cuantía Transversal de la estructura corregida vigas Nivel 3	
	Cuantía Transversal de la estructura corregida vigas Nivel 3	
	Cuantía Transversal de la estructura corregida vigas Nivel 2	
	Cuantía transversal de la estructura corregida en columnas Nivel 5	
	Cuantía transversal de la estructura corregida en columnas Nivel 4	
	Cuantía transversal de la estructura corregida en columnas Nivel 3	
	Cuantía transversal de la estructura corregida en columnas Nivel 2	
	Cuantía transversal de la estructura corregida en columnas Nivel 1	
	Comparación de periodos y frecuencia de los modelos analizados	
	Comparación de derivas de los modelos analizados	
	Cuantías Longitudinal en vigas de los modelos analizados, Nivel 5	
	Cuantías Longitudinal en vigas de los modelos analizados, Nivel 4	
	Cuantías Longitudinal en vigas de los modelos analizados. Nivel 3	

Tabla 89. Cuantías Longitudinal en vigas de los modelos analizados, Nivel 2	99
Tabla 90. Cuantías Longitudinal en vigas de los modelos analizados, Nivel 1	100
Tabla 91. Cuantía transversal en vigas de los modelos analizados, Nivel 5	100
Tabla 92. Cuantía transversal en vigas de los modelos analizados, Nivel 5	101
Tabla 93. Cuantía transversal en vigas de los modelos analizados, Nivel 5	101
Tabla 94. Cuantía transversal en vigas de los modelos analizados, Nivel 5	102
Tabla 95. Cuantía transversal en vigas de los modelos analizados, Nivel 5	

ÍNDICE DE FIGURAS

Figura 1: Terremoto de Riobamba – 1797	7
Figura 2: Terremoto de Esmeralda, costa afuera de Mompiche - 1906	7
Figura 3: Terremoto de Pedernales - Chone - 1942	8
Figura 4: Terremoto que afectó la provincia de Tungurahua - 1949	8
Figura 5: Terremoto de Esmeralda - 1958	9
Figura 6: Terremoto en la zona norte del Ecuador (Tumaco) - 1979	9
Figura 7: Evacuaciones durante el terremoto de Quito - 2014	
Figura 8: Consecuencias del Terremoto de Pedernales - 2016	10
Figura 9: Daños materiales terremoto de Salinas - 2019	11
Figura 10: Epicentro del terremoto y sus réplicas en Daule - 2022	11
Figura 11: Zonificación Sísmica del Ecuador	
Figura 12: Losa Unidireccional	19
Figura 13: Corte de una Losa Maciza	20
Figura 14: Sistema de Pórticos Resistentes a momentos en Acero Estructural	22
Figura 15: Implantación Estructural de la edificación	31
Figura 16: Elevación Estructural de la edificación	31
Figura 17: Planta Arquitectónica para todos los pisos	32
Figura 18: Corte de Losa Alivianada e = 25 cm	34
Figura 19: Proceso para obtener el área tributaria	37
Figura 20: Espectro de Diseño, suelo tipo C	44
Figura 21: Ingreso de la resistencia a la compresión del Hormigón Armado	49
Figura 22: Ingreso de la resistencia a la fluencia del Hormigón Armado	49
Figura 23: Vigas 30 x 30 cm, en ETABS	
Figura 24: Columnas 50 x 50 cm, en ETABS	50
Figura 25: Columnas 40 x 40 cm, en ETABS	
Figura 26: Ingreso de propiedades y secciones de las losas nervadas y maciza, con	rigidez
y sin rigidez	51
Figura 27: Valores de Bending y Shear con 1,000 el cual se considera con rigido	
losa	52
Figura 28: Valores de Bending y Shear con 0,001 el cual es considerado sin rigid	ez en la
losa	52
Figura 29: Vista de Planta y Elevación de la estructura en el software ETABS	53
Figura 30: Sección de viga en interior (25x40 cm)	55
Figura 31: Sección en vigas de Borde (35x45 cm)	56

ÍNDICE DE ILUSTRACIÓN

Ilustración 1: Línea de tiempo de algunos terremotos a lo largo de la histor	ria del Ecuador
	6
Ilustración 2: Diagrama de Proceso	29

INTRODUCCIÓN

En la actualidad la Ingeniería Civil, enfocado en el campo de construcciones y estructuras resistentes, requiere del empleo y uso correcto de los criterios, software y normativas para un buen diseño de una edificación, ya sea esta de hormigón armado o acero estructural.

El ingeniero calculista propone el cumplimiento de los estándares empleados en esta rama de la ingeniería, para así satisfacer las necesidades que se presentan al momento de la construcción de las edificaciones, obteniendo diseños estructurales, que soporte cargas a la cual siempre estará expuesto, como son su peso sostenido por sí mismo (cargas muertas), cargas sometidas durante su vida útil (cargas vivas) y las que son producidas por factores de la naturaleza, según sismos, vientos y agua.

Es por eso que mediante este proyecto de investigación se diseña una edificación cuya estructura es de hormigón armado, la utilización del programa ETABS se busca el modelamiento más óptimo al momento de diseñarlo con sistema de pórticos resistentes a momentos considerando el aporte de sus losas versus la misma edificación sin el aporte de sus losas.

CAPÍTULO I

1.1 Tema

Diseño de edificaciones en hormigón armado regulares con sistemas de pórticos resistentes a momentos, sus efectos de la modelación de las losas y comportamiento sismo resistentes.

1.2 Planteamiento del Problema

El crecimiento poblacional reduce en gran cantidad el espacio para construir dentro de la urbe, es por eso que ha aumentado la demanda de la construcción de edificios residenciales esbeltos, que brinden seguridad.

El Ecuador es considerado un país altamente sísmico ya que su ubicación geográfica se encuentra situada en el Cinturón de Fuego del Pacifico, de igual manera, se localiza en la zona de subducción que es producido por la Placa de Nazca y la Sudamericana generando una convergencia relativa de 6 cm/yr, la presencia en reiteradas ocasiones movimientos telúricos que han afectado a las edificaciones obteniendo como consecuencia pérdidas humanas, materiales y económicas.

Como es de conocimiento en abril del año 2016 se originó un terremoto de magnitud de grado 7.8 en la Costa Oeste del Norte cuyo epicentro fue en la ciudad de Pedernales, provincia de Manabí, dejando pérdidas irreparables con una cantidad de 670 fallecidos y edificaciones destruidas que no cumplían con las respectivas especificaciones estipuladas en la NEC (Norma Ecuatoriana de la Construcción) que fue una detonante para empezar a diseñar con criterios más exigentes para prevenir futuras catástrofes de igual o mayor índole.

Es por eso que, al momento de diseñar y construir casas y edificaciones, las estructuras de estas obras tienen que brindar parámetros viables de hábitat como seguridad, altura, peso, confort, costo y sostenibilidad.

El proyecto de investigación analizó dos tipos de arquitecturas con distintos prediseños estructurales regulares en hormigón armado, con un sistema de pórticos resistentes a momentos, para así realizar un modelo estructural de la edificación considerando la rigidez en sus losas y un modelo estructural de la misma edificación sin considerar dicha rigidez en sus losas, ya que pretende comprobar si sufre o no variaciones con respecto a los esfuerzos, derivas, periodos, rigideces y torsión de los modelos antes mencionados de esta manera se define el diseño estructural óptimo.

1.3 Formulación del Problema

¿De qué manera afectará diseñar edificios de hormigón armado con modelación al incluir su rigidez y no incluir su rigidez en sus losas?

1.4 Objetivo General

 Realizar el análisis comparativo entre el diseño de una edificación regular de hormigón armado con sistema de pórticos resistentes a momentos considerando el aporte de rigidez en sus losas versus la misma edificación sin el aporte de la rigidez en sus losas.

1.5 Objetivos Específicos

- Prediseñar una edificación de hormigón armado con sistema de pórticos resistentes a momentos.
- Definir las estructuras de los modelos matemáticos con rigidez en losa y sin rigidez en losa.
- Analizar de forma comparativa las estructuras de los dos modelos matemáticos, agregando un tercer modelo al análisis.

1.6 Hipótesis

Con el Diseño de edificaciones en hormigón armado regulares con sistemas de pórticos resistentes a momentos, sus efectos de la modelación de las losas y comportamiento sismo resistentes logrará que los modelos sean viables y sustentables.

1.7 Línea de investigación Institucional/Facultad

Tabla 1 *Línea de investigación institucional ULVR, FIIC.*

Dominio	Línea Institucional	Líneas de facultad
Urbanismo y ordenamiento territorial aplicando tecnología de construcción eco-amigable, industria y desarrollo de energías renovables.	Territorio	Hábitat y Vivienda

Fuente: Universidad Laica Vicente Rocafuerte de Guayaquil (2023).

Elaborado por: Alfonzo & Barrionuevo. (2023)

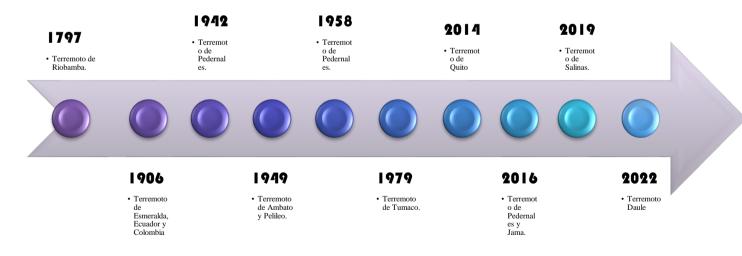
CAPÍTULO II

MARCO TEÓRICO

2.1 Marco Teórico

En el artículo "Estudio Comparativo de Edificio Residencial de Varias Plantas (G+3) utilizando Software ETABS y Cálculo Manual" (Abdullah & Islam, 2021) mencionan que en la antigüedad se hacian los calculos de forma manual para prediseñar un edificio y que con el software ETABS se busca facilitar el diseño tanto en tiempo como en precisión que es un criterio fundamental que se considera dentro del limite permisible. Cabe mencionar que dicho programa da resultados ligeramente elevados para los diferentes tipos de cargas, momento y corte en comparación a los calculos manuales es por esta razónn que ETABS es garantía para el análisis de edificios de varios pisos. Otro punto importante es que el calculo manual está representado como un sistema bidimensional mientras que en el programa ETABS posee un sistema tridimensional es por eso que se recalca que usar este tipo de software ayudan a completar los proyectos en poco tiempo claro esta que depende del criterio y conocimiento del diseñador estrucutral. Por otro lado, Estrada Gilmer & Núñez Melver, en su investigación "RIGIDEZ, ALTURA Y AGRIETAMIENTO EN EL CÁLCULO DEL PERIODO FUNDAMENTAL DE VIBRACIÓN DE EDIFICIOS APORTICADO Y DUAL, NUEVO CHIMBOTE 2021" indica los siguiente: que el cambio de la rigidez, altura y agrietamiento interviene y causa variación en los periodos de vibración de una edificación, en la cual analizan y comparan dos sistemas estructurales que son el aporticado y el dual. Con dicha investigación se comprobó que al alterar los parámetros anteriormente mencionada infiere un cambio radical en el periodo de vibración de las estructuras analizadas, lo cual brinda condiciones mas seguras en las estructuras y así disminuir costo en la construcción con materiales y secciones adecuadas que cumplan con la normativa que rige en dicho país. (Núñez Calle, 2021)

Darwin Acosta en su proyecto de investigación "Análisis de la influencia del modelado de losas por elementos tipos Shell y membrana en el diseño estructural de un edificio de 4 pisos, utilizando un software de diseño especializado" (2022) aporta que: para obtener un diseño estructural optimo, es preciso realizar una modelación de la estructura lo cual determina esfuerzos y deformaciones reales a la que estará sometida la estructura con ayuda de un software de análisis estructural, se concluyo que al momento de modelar con el elemento tipo membrana va a tender a aumentar las secciones de los elementos estructurales prediseñados. (Portilla, 2022)


2.2 Antecedentes del Problema

2.2.1. Línea de tiempo

Cuando una gran cantidad de energía es liberada esta lo hace en forma de ondas y existen 3 tipos de ondas: primaria, secundaria y superficial. El punto donde se genera el movimiento bajo la tierra se lo conoce como hipocentro y el punto donde se registra el terremoto superficialmente se llama epicentro.

Ecuador se encuentra localizado en un vasto territorio sísmico es por eso que se presentan diariamente movimientos telúricos de magnitudes leves, a través de una línea de tiempo se presentará los terremotos que más impacto y daños ocasionados en la historia. (**ver Ilustración 1 & Figuras 1, 2, 3, 4, 5, 6, 7, 8, 9 y 10**).

Es por esto que se debe de tomar las consideraciones necesarias al momento de realizar un diseño estructural para que estos no sufran variaciones o daños de mayor magnitud durante un evento sísmico. Dichos criterios son los desplazamientos horizontales o derivas, con respecto al tiempo los periodos de vibración y como propiedades físicas la rigidez y torsión.

Ilustración 1

Línea de tiempo de algunos terremotos a lo largo de la historia del Ecuador. Elaborado por: (Alfonzo & Barrionuevo, 2023)

I. Terremoto de Riobamba 1797

Fecha y hora: 4 de febrero de 1797 a las 07:45

➤ Magnitud: 8.3 en la escala Magnitud de Momento.

> Tiempo de duración: 4 minutos

➤ Muertes: 20 000 personas

Figura 1: Terremoto de Riobamba – 1797

Fuente: (Moncayo Theurer, Velasco, Mora, Montenegro, & Cordova, 2017)

II. Terremoto de Esmeralda, costa afuera de Mompiche 1906

Fecha y hora: 31 de enero de 1906 a las 10:36

Magnitud: 8.5 en la escala Magnitud de Momento.

Tiempo de duración: 4 minutos

➤ **Muertes:** 1500 personas

Figura 2: Terremoto de Esmeralda, costa afuera de Mompiche - 1906

Fuente: (Moncayo Theurer, Velasco, Mora, Montenegro, & Cordova, 2017)

III. Terremoto de Pedernales 1942

Fecha y hora: 14 de mayo de 1942 a las 02:13

Magnitud: 7.8 en la escala Magnitud de Momento.

Tiempo de duración: 2 minutos

> Muertes: 300 personas (No confirmado)

Figura 3: Terremoto de Pedernales - Chone - 1942 **Fuente:** (Moncayo Theurer, Velasco, Mora, Montenegro, & Cordova, 2017)

IV. Terremoto de Ambato y Pelileo 1949

Fecha y hora: 5 de agosto de 1949 a las 14:08

➤ Magnitud: 8.3 en la escala Magnitud de Momento.

Tiempo de duración: 5 minutos

➤ **Muertes:** 5 050 personas

Figura 4: Terremoto que afectó la provincia de Tungurahua - 1949

Fuente: (Moncayo Theurer, Velasco, Mora, Montenegro, & Cordova, 2017)

V. Terremoto limite Ecuador - Colombia 1958

Fecha y hora: 19 de enero de 1958 a las 09:07

➤ **Magnitud:** 7.6 en la escala Magnitud de Momento.

Tiempo de duración: 6 minutos

➤ **Muertes:** 111 personas.

Figura 5: Terremoto de Esmeralda - 1958

Fuente: (Moncayo Theurer, Velasco, Mora, Montenegro, & Cordova, 2017)

VI. Terremoto de Tumaco 1979

Fecha y hora: 12 de diciembre de 1979 a las 02:59

➤ Magnitud: 7.8 en la escala Magnitud de Momento.

Tiempo de duración: 7 minutos

Muertes: 454 personas (Afectó al norte del Ecuador)

Figura 6: Terremoto en la zona norte del Ecuador (Tumaco) - 1979

Fuente: (Moncayo Theurer, Velasco, Mora, Montenegro, & Cordova, 2017)

VII. Terremoto de Quito 2014

Fecha y hora: 12 de agosto de 2014 a las 14:57

➤ Magnitud: 5.1 en la escala Magnitud de Momento.

> Tiempo de duración: 4 minutos

> Muertes: 4 personas

Figura 7: Evacuaciones durante el terremoto de Quito - 2014

Fuente: (Astudillo C., 2014)

VIII. Terremoto de Pedernales 2016

Fecha y hora: 16 de abril de 2016 a las 18:58

➤ **Magnitud:** 7.8 en la escala Magnitud de Momento.

Tiempo de duración: 6 minutos

➤ **Muertes:** 673 personas

Figura 8: Consecuencias del Terremoto de Pedernales - 2016

2010

Fuente: (Christian, 2016)

IX. Terremoto de Salinas 2019

Fecha y hora: 31 de marzo de 2019 a las 02:04

➤ Magnitud: 6.1 en la escala Magnitud de Momento.

> Tiempo de duración: 6 minutos

> Muertes: 0 personas (daños materiales).

Figura 9: Daños materiales terremoto de Salinas - 2019

Fuente: (Teleamazonas, 2019)

X. Terremoto de Daule 2022

Fecha y hora: 14 de julio de 2022 a las 17:30

➤ **Magnitud:** 6.1 en la escala Magnitud de Momento.

> Tiempo de duración: 4 minutos

➤ Muertes: 0 personas (daños materiales).

Figura 10: Epicentro del terremoto y sus réplicas en Daule

- 2022

Fuente: (Ponce & Santo, 2022)

En el terremoto ocurrido el 16 de abril en Pedernales – Ecuador se observa que las edificaciones son construidas para periodos de vibraciones cortas, es por eso que a mayor medida del periodo de vibración los daños sobre los diseños estructurales de las edificaciones son alarmantes, ya que de igual manera ciertas estructuras no cumplían con las especificaciones estipuladas por la Norma Ecuatoriana de la Construcción (NEC) - Peligro sísmico y Estructuras de hormigón armado utilizando materiales no adecuados para la construcción, ni respetando los rangos de tolerancia a considerar en una zona altamente sísmica.

2.2.2. Zonificación sísmica según la Norma Ecuatoriana de la Construcción NEC15

El valor Z que representa la aceleración máxima en la roca para edificaciones de uso normal es expresada como fracción de la aceleración de la gravedad, la ubicación de la estructura determina el factor Z de una de las seis zonas sísmicas del Ecuador. La **Figura 11** muestra la zonificación sísmica que se origina con el estudio del peligro sísmico para un 10% de excedencia en 50 años cuyo periodo de retorno es de 475 años. A partir de esta división de zonas las NEC-15 establece los valores del valor factor Z con su respectiva caracterización o intensidad de la zona que se detalla en la **Tabla 2**.

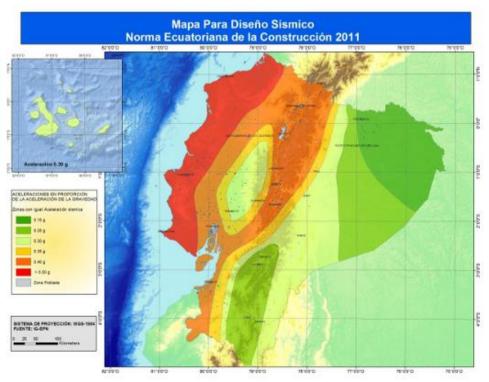


Figura 11: Zonificación Sísmica del Ecuador

Fuente: (*NEC*, 2015)

Tabla 2. Valores del Factor Z, según su zona sísmica

Zona sísmica	I	II	III	IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.40	≥ 0.50
Caracterización						
del peligro	Intermedia	Alta	Alta	Alta	Alta	Muy alta
sísmico						

Nota: Valores otorgado por (NEC, 2015)

Elaborado por: (Alfonzo & Barrionuevo, 2023)

En este proyecto el tipo de suelo será el valor 0.40 ya que la estructura se encuentra ubicada en la ciudad de Guayaquil, catalogada una zona sísmica nivel V, peligro sísmico alto.

2.2.3. Coeficientes de perfil del suelo

La (NEC, 2015) en la guía de Peligro Sísmico, en la sección del capítulo 3, otorga los valores de *Fa*, *Fd y Fs*, que son las ordenadas que permite realizar el espectro elástico según su tipo de suelo y zona sísmica. Se especifica en las siguientes tablas:

Tabla 3.Fa: Coeficiente de amplificación de suelo en la zona de período corto

			Zona sísmic			
Tipo de perfil del	I	II	III	IV	V	VI
subsuelo –	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
C	1.4	1.3	1.25	1.23	1.2	1.18
D	1.6	1.4	1.3	1.25	1.2	1.12
E	1.8	1.4	1.25	1.1	1.0	0.85

Nota: Valores otorgado por (NEC, 2015)

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 4.Fd: amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca

		7	Zona sísmic	a y factor Z	Z	
Tipo de perfil del	ı	II	III	IV	V	VI
subsuelo	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
C	1.36	1.28	1.19	1.15	1.11	1.06
D	1.62	1.45	1.36	1.28	1.19	1.11
E	2.1	1.75	1.7	1.65	1.6	1.5

Nota: Valores otorgado por (NEC, 2015)

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 5. Fs: Comportamiento no lineal de los suelos

	Zona sísmica y factor Z						
Tipo de perfil	I	II	III	IV	V	VI	
del subsuelo	0.15	0.25	0.30	0.35	0.40	≥0.5	
A	0.75	0.75	0.75	0.75	0.75	0.75	
В	0.75	0.75	0.75	0.75	0.75	0.75	
C	0.85	0.94	1.02	1.06	1.11	1.23	
D	1.02	1.06	1.11	1.19	1.28	1.40	
E	1.5	1.6	1.7	1.8	1.9	2	

Nota: Valores otorgado por (NEC, 2015)

Elaborado por: (Alfonzo & Barrionuevo, 2023)

2.2.4. Diseño estructural

Es un sistema o mecanismo que se usa para precisar la estabilidad, la resistencia y la rigidez estructural. El objetivo primordial de método es que sea seguro, funcional y económico. (Q., 2022)

El diseño estructural es también visto desde un punto arquitectónico y busca obtener las dimensiones de la sección transversal, el material a emplearse y su calidad, la cantidad de refuerzos que necesitará para soportar/tolerar cargas a la cual estará sometida la edificación, obtenidas por el proceso de análisis estructural. (FenArq., 2022)

Los elementos que componen el diseño estructural son:

- ✓ **Arreglo estructural.** Es donde se va a definir los diferentes sistemas estructurales como son los verticales, horizontales y, por último, los materiales.
- ✓ **Determinación de cargas.** Se realiza en función de los requerimientos establecidos y deben ser cumplidos como indica la Norma NEC2015
- ✓ **Predimensionamiento.** Se toman medidas iniciales para el prediseño que luego se revisará. En esta fase, se sugiere la ubicación y las dimensiones opcionales de los elementos estructurales.
- ✓ Análisis estructural. En este ítem se calcula las fuerzas internas, reacciones y deformaciones a la cual estará propensa la estructura, se puede desarrollar a través de software programados que analizan el comportamiento de la estructura.
- ✓ **Diseño estructural.** Se define y proporcionan las dimensiones definitivas y refuerzos de los elementos estructurales. Se revisan tres criterios puntuales, como son: Resistencia que es brinda seguridad, servicio (funcionalidad) y economía.
- ✓ Preparación de planos. Con la información recabada se procede a elaborar los planos estructurales, a través de software de dibujo y entregados en CD.

Principios básicos del diseño estructural; lo que busca el diseño estructural es que una edificación cumpla con su vida útil y no se considere defectuosa. Tiene tres requisitos principales que deben ejecutarse:

1. Seguridad

Debe brindar toda la seguridad, ya que estará habitada por seres humanos que debe responder de una manera garantizada ante la aparición de cargas externas y no tender al fallo de separación de sus elementos.

2. Funcionalidad

La estructura debe cumplir la funcionalidad de su vida útil satisfaciendo todos los requerimientos.

3. Economía

Trata de minimizar el peso estructural considerando los recursos a utilizarse en el proceso constructivo de un diseño estructural sismo resistente.

2.2.5. Edificación

Es un conjunto de elementos estructurales que su principal función es soportar cargas vivas, cargas muertas y cargas ejercidas por la naturaleza como son la de viento, térmica y sísmica, esta última se centrará para el objeto de estudio. (Portilla, 2022)

2.2.6. Hormigón Armado

Es un material al que se le añade acero estructural para originar este tipo de hormigón que se elabora para que cumpla requerimientos específicos como alta resistencia a la tracción. (Portilla, 2022)

2.2.7. Área Tributaria

Es una distribución estructural dado si una viga que soporta un piso, techo o pared está sujeta a presión, la fuerza total en el miembro de la viga o columna es igual al área correspondiente multiplicada por la carga o la presión de la superficie. (Portilla, 2022)

2.2.8. Definiciones básicas de elementos estructurales

Un elemento estructural se entiende como la composición de elementos portantes, compresivos y flectores que conforman una estructura resistente. Son miembros sumamente importantes en las edificaciones, ya que cada uno cumple con funciones diferentes en la edificación.

Es importante conocer las dimensiones de los elementos, ya que esto permite trabajar bajo las especificaciones técnicas que debe cumplir cada uno, esto permite el cálculo de cantidades de materiales a emplearse en la construcción de los mismos y saber el

funcionamiento que va a desempeñar durante su vida útil, unificado en una sola estructura resistente.

2.2.8.1. Cimentaciones

Son componentes estructurales que se sitúan en la parte inferior de toda obra cuya finalidad es de transmitir al subsuelo las cargas que ejercen la edificación. Las cimentaciones son superficiales o profundas. (Guevara, 2014)

Las cimentaciones superficiales. -

Este tipo de cimentación se sitúa en una capa que no demanda mucha profundidad, ya que posee una capacidad portante adecuada y la estructura tiende a ser liviana, ni tan esbelta. Es una de las cimentaciones que se emplea con mayor frecuencia, gracias a su bajo costos y tiempo de ejecución en obra. Se pueden clasificar de la siguiente manera:

- ✓ Cimentaciones Ciclópeas.
- ✓ Losa de Cimentación.
- ✓ Zapatas.
 - Zapata Aislada.
 - Zapata Corrida.
 - Zapata Combinada.

Las cimentaciones semiprofundas. -

Se emplean en suelos no adecuados a la resistencia y cargas que ejercerá la estructura de la edificación, se profundiza hasta hallar un lecho de suelo optimo que cumpla la estabilización de la misma. Esta clase de cimentación se clasifica de la siguiente forma:

- ✓ Pozo de cimentación.
- ✓ Muro de contención bajo rasante.

Las cimentaciones profundas. -

Las cimentaciones profundas se utilizan en su mayoría para construcciones que contemplan un área extensa determinada, donde las cargas que existan demanden este tipo de cimentación y que el tipo de suelo no soporte el peso de dicha estructura. Por eso tiene que

basarse en que el esfuerzo cortante del suelo y el asentamiento de la edificación toleren las cargas que se apliquen. Estas cimentaciones se catalogan de este modo:

- ✓ Pilas y Cilindros.
- ✓ Pilotes.

2.2.8.2. Columnas

Es uno de los elementos verticales que comprende una estructura, cumple su función al momento de transmitir esfuerzos y cargas hacia la cimentación, brindando un soporte a la estructura. Este elemento trabaja a flexo – compresión porque soporta cargas gravitacionales, de viento y sísmicas. (Daniela, 2015)

En este proyecto se utilizará columnas de Hormigón Armado

2.2.8.3. Vigas

Una viga es considerada un elemento estructural lineal, la cual acoge las cargas, ya sean, concentradas, uniformes o lineales, transfiriéndola a las columnas. En la parte inferior y superior es donde se encuentran las máximas tensiones y son en esos sectores donde se debe cuidar que no estén bajo esfuerzo de torsión. (Daniela, 2015)

2.2.8.4. Losas

Estructura plana horizontal bidimensional ya que vista en planta sus dimensiones son mayores a la altura, que divide los niveles de una edificación a su vez el ultimo nivel en su parte superior cumple la función de cubierta y la parte inferior como techo de la misma. Este elemento admite directamente cargas gravitacionales perpendiculares al plano como son las cargas vivas y cargas muertas. Las losas se clasifican según su criterio (Daniela, 2015):

- ✓ Distribución del refuerzo (Ver ítem 2.2.6.)
- ✓ Composición (Ver ítem 2.2.7.)

2.2.8.5. Voladizos

Los voladizos son estructuras que brindan un ámbito adicional que sobresale de la edificación, generalmente estos elementos constan de un apoyo empotrado en alguno de sus extremos, que por lo usual es vertical. Cuando están sometidos a una carga, este lo transmite al apoyo por medio de una tensión cortante y un momento. Cumple con dos funciones fundamentales, como es la superficie transitable o la superficie de cubierta. (Piñeira, 2022)

2.2.9. Tipo de losas

2.2.9.1. Losas Unidireccionales

Las losas Unidireccionales usualmente son de figura rectangular variando en sus dimensiones donde un paño es mínimo 1.5 y máximo 2 veces mayor que el otro, como se puede observar en la ilustración (Ver figura 12.), la descarga de las fuerzas que soporta este tipo de losa lo realiza en una sola dirección. Al momento de diseñar se tiene en cuenta un metro de ancho ya que actúa como viga ancha. (Chávarry, 2015)

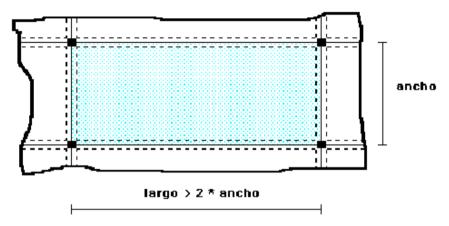


Figura 12: Losa Unidireccional

Fuente: (Daniela, 2015)

2.2.9.2. Losas Bidireccionales

Como su nombre lo indica este tipo de losas distribuye las cargas que soporta en dos direcciones, son usadas comúnmente en las construcciones. Se identifican ya que sus dimensiones tienen una relación menor de 1.5 entre su lado mayor y menor. (Reyes, 2017)

19

2.2.10. Modelos de tipo de losa

2.2.10.1. Losa Alivianada

Las losas alivianadas, son fabricadas con unas cajonetas alivianadoras y consta de unas vigas en ambos sentidos, es decir, transversal y longitudinal, que cumple la función de nervios la cual enlaza el pie de los pilares. También conocidas como losas Nervadas, este tipo de losa, comúnmente tienen un espesor de 20 cm. El sistema entramado de esta losa forma una retícula, para así obtener huecos intermedios que serán ocupados por material o bloques huecos que resistan una concentración de carga hasta una tonelada. (Manzano, 2019)

2.2.10.2. Losa Maciza

Es un tipo de losa, que se construye con Hormigón Armado de una sección transversal completamente llena. Utiliza doble acero de refuerzo tanto en su área superior e inferior, esto se debe a que su cálculo y diseño, esta direccionado a soportar cargas o estructuras de gran peso, por lo general, los espesores de estas losas suelen variar desde 8 hasta 30 cm. (Alava, 2020)

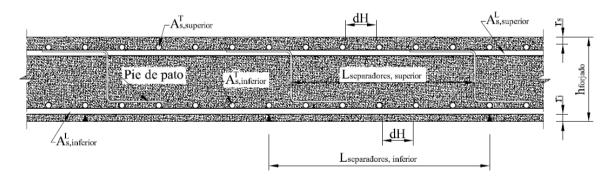


Figura 13: Corte de una Losa Maciza

Fuente: (Mieles, 2018)

2.2.11. Sistemas Estructurales

Un sistema estructural hace referencia a la unión de varios elementos estructurales, la cual están diseñados para soportar cargas. La forma y el material a utilizarse definen que sistema estructural se empleara, esto es un sistema continuo que al conjugarse sea capaza de soportar su propia carga y las exteriores. Las especificaciones que determinan el material y sistema a utilizarse son las siguientes: (Niño, 2014)

- Economía.
- Problemas de diseño y construcción.
- Funcionalidad de la estructura.

Los sistemas estructurales que se utilizan al momento de usar Hormigón Armado, puede clasificarse de tres maneras:

- ✓ Muros Portantes o Muros de Corte.
- ✓ Pórticos Resistentes a Momentos.
- ✓ Sistema Dual Pórtico.

En este proyecto se utilizó el sistema de Pórticos Resistentes a Momentos.

2.2.12. Pórticos resistentes a momento

El sistema de Pórticos Resistentes a Momentos, es un sistema estructural usado tanto para la construcción de edificaciones de Hormigón Armado y Acero estructural. Este sistema eventualmente se utiliza en estructuras no tan esbeltas, es un sistema que consta de columnas, vigas y losas, que se encuentran unidos por nodos rígidos, la cual transfiere las cargas axiales y los momentos flectores a las columnas. (Lascano, 2015)

Figura 14: Sistema de Pórticos Resistentes a momentos en Acero Estructural.

Fuente: (Alfonzo & Barrionuevo, 2023)

2.2.13. Software de Diseño

Un software de Diseño especializado en lo estructural permite un cálculo con mayor precisión, previamente realizando un prediseño con el criterio óptimo. Estos softwares permiten una visualización de la edificación modelada y en 3D, ofrecen herramientas para el análisis lineal y no lineales, con el material a utilizarse en la construcción. A su vez aporta informes que puedan ocurrir durante algún sismo que este propensa la estructura. (Cencia, 2017)

2.2.14. Elemento tipo Shell y Membrana

Estos elementos son herramientas que están diseñadas dentro del mismo software para poder analizar cómo se comporta el elemento estructural y el material del mismo mediante la presencia de cargas a la cual estará sometida, dando a notar los esfuerzos que sufrirá su apoyo. Los elementos tipo Shell y Membrana, hace referencia a las losas de entrepiso y cubiertos; en cambio se conoce como elementos tipo frame a las columnas y vigas. (Portilla, 2022)

2.2.14.1. Tipo Shell

Los elementos tipo Shell tienen seis grados de libertad, por cada nodo, se dividen tres de traslación y los otros tres de rotación. Estos elementos aportan rigidez ante la flexión, es por eso que resiste a la deformación por flexión, este no transmite todas las cargas a las vigas situadas bajo al elemento tipo Shell. (Portilla, 2022)

2.2.14.2. Tipo Membrana

Este elemento consta con tres grados de libertad, por cada nodo, en la cual, dos de ellos son de traslación y uno de rotación normal en el plano, es decir, que si se modela la losa de un edifico se obtendrá desplazamientos en X e Y con un giro en Z. Este elemento admite cargas perpendiculares al plano y a su vez permite deformaciones en el mismo. (Portilla, 2022)

2.2.15. Definiciones Esenciales

De acuerdo a lo mencionado en la Norma Ecuatoriana de la Construcción – NEC-SE-DS, dicho capítulo se basa en las Cargas Sísmicas de Diseño Sismo Resistente. (NEC, 2015)

2.2.15.1. Peligrosidad Sísmica

Probabilidad de ocurrencia, dentro de un período específico de tiempo y dentro de una región determinada, movimientos del suelo cuyos parámetros: aceleración, velocidad, desplazamiento, magnitud o intensidad son cuantificadores.

2.2.15.2. Periodo Fundamental Estructural

El período fundamental de una estructura es el tiempo que ésta toma en dar un ciclo completo ir y venir, cuando experimenta vibraciones no forzadas. Su determinación es primordial porque de él depende la magnitud de la fuerza sísmica que experimentara la estructura.

El período es función de la masa y rigidez de la edificación.

2.2.15.3. Resistencia Lateral del Piso

"Sumatoria de la capacidad a corte de los elementos estructurales verticales del piso" (NEC, 2015).

2.2.15.4. Respuesta Elástica

"Parámetros relacionados con fuerzas y deformaciones determinadas a partir de un análisis elástico, utilizando la representación del sismo de diseño sin reducción, de acuerdo con las especificaciones de la presente norma". (NEC, 2015)

2.2.15.5. Rigidez

Es la capacidad de un elemento estructural para soportar esfuerzos sin adquirir grandes deformaciones y/o desplazamientos. "Los principales parámetros que la definen son la longitud e inercia de los elementos estructurales, los tipos de uniones, los materiales utilizados". (NEC, 2015)

2.2.15.6. Rigidez Lateral del Piso

"Sumatoria de las rigideces a corte de los elementos verticales estructurales del piso" (NEC, 2015)

2.2.15.7. Rigidez Efectiva

"Proviene de una relación entre período, masa y rigidez para sistemas de un grado de libertad" (NEC, 2015)

2.2.15.8. **Deriva de Piso**

"Desplazamiento lateral relativo de un piso en particular por la acción de una fuerza horizontal con respecto al piso consecutivo, medido en dos puntos ubicados en la misma línea vertical de la estructura" (NEC, 2015). Se calcula restando del desplazamiento del extremo superior menos el desplazamiento del extremo inferior del piso

2.2.15.9. Cortante Basal de Diseño

"Fuerza total de diseño por cargas laterales, aplicada en la base de la estructura, resultado de la acción del sismo de diseño con o sin reducción, de acuerdo con las especificaciones de la presente norma" (NEC, 2015)

2.2.15.10. Espectro de respuesta para Diseño

Representa la amenaza el peligro sísmico, y más específicamente la respuesta de la estructura al sismo. El espectro de diseño puede representarse mediante un espectro de respuesta basado en las condiciones geológicas, tectónicas, sismológicas y del tipo de suelo asociadas con el sitio de emplazamiento de la estructura, o bien puede ser un espectro construido según los requerimientos especificados. (NEC, 2015)

Es un espectro de tipo elástico para una fracción de amortiguamiento respecto al crítico del 5% utilizado con fines de diseño para representar los efectos dinámicos del sismo de diseño.

2.2.15.11. Modos de Vibración de un Edificio

Los edificios, los cuerpos materiales, tienen diferentes modos de vibrar ante las cargas dinámicas, que al momento de originarse un movimiento telúrico afectan en mayor o menor medida. Dichas maneras de vibrar se conocen como modos de vibración.

Las estructuras oscilan de un lado a otro. En la base de la edificación el movimiento es menor que el de la parte superior de la misma. Cuando ocurre un sismo, este movimiento de vibración se ve incrementado en la estructura. Además de modo 1, los edificios se ven sometidos también a vibraciones de Modo 2, 3, 4, etc.

2.3 Marco Legal

En este proyecto se usarán los lineamientos que estipula la NEC-15 (Norma Ecuatoriana de la Construcción), se utilizará la norma ACI 318-14 (American Concrete Institute) y la norma ASCE 7-16 (American Society Of Civil Engineers), todas estas normativas serán aplicadas obligatoriamente para efectuar las exigencias al momento de diseñar y construir edificaciones. A continuación, se menciona las normativas requeridas:

NORMA NEC-15:

- NEC-SE-HM: Estructura de Hormigón Armado
- NEC-SE-RE: Riesgo sísmico, evaluación, rehabilitación de estructuras
- NEC-SE-DS: Peligro sísmico, diseño sismo resistente
- ➤ NORMA ACI 318-14
- ➤ NORMA ASCE 7-16

De acuerdo al decreto estipulado en la Constitución de la República del Ecuador según el Registro Oficial No. 449, del 20 de octubre del 2008 en la Sección Sexta que corresponde al Hábitat y vivienda.

Art. 30 menciona las personas tienen derecho a un hábitat seguro y saludable, y a una vivienda adecuada y digna, con independencia de su situación social y económica.

Art. 31 cita las personas tienen derecho al disfrute pleno de la ciudad y de sus espacios públicos, bajo los principios de sustentabilidad, justicia social, respeto a las diferentes culturas urbanas y equilibrio entre lo urbano y lo rural. El ejercicio del derecho a la ciudad se basa en la gestión democrática de ésta, en la función social y ambiental de la propiedad y de la ciudad, y en el ejercicio pleno de la ciudadanía. (Ecuador, 2008).

CAPÍTULO III

METODOLOGÍA DE LA INVESTIGACIÓN

3.1 Enfoque de la investigación: (cuantitativo, cualitativo o mixto)

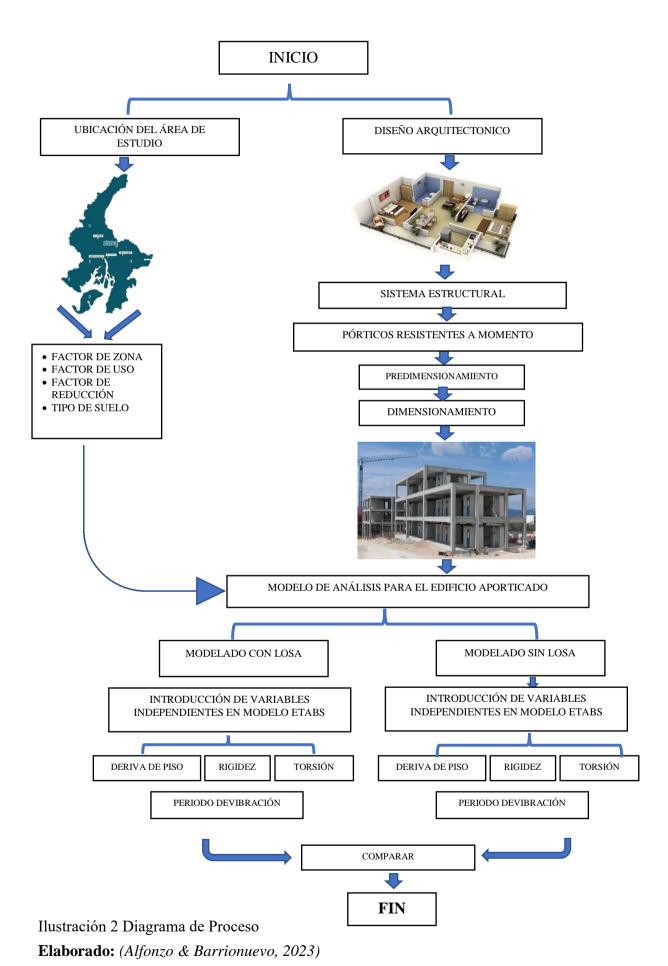
La investigación será de tipo mixto ya que se usará el enfoque cuantitativo para obtener datos precisos sobre el comportamiento de la edificación durante un terremoto y como enfoque cualitativo comparar el modelado de la estructura incluyendo la rigidez de las losas y sin incluir la rigidez de las losas.

3.2 Alcance de la investigación: (Exploratorio, descriptivo o correlacional)

El alcance del proyecto de investigación es exploratorio debido a que la investigación tiene poca información bibliográfica y correlacional ya que se basará en la comparación de los resultados obtenidos del diseño de una edificación de hormigón armado modelado con rigidez en losa versus modelado sin rigidez en losa.

3.3 Técnica e instrumentos para obtener los datos:

El siguiente estudio tuvo como técnica el experimento y en la parte de instrumentos se basó en pruebas variables, estadísticos y correlaciones, ya que se usó software sofisticados como Excel para realizar el predimensionamiento de la estructura y ETABS para la modelación y correlación de dichos datos.


3.4 Población y muestra

Se usará un edificio multifamiliar de 5 pisos de hormigón armado regular con sistemas de pórticos resistente a momento, el mismo que será la población y muestra de la presente investigación. Dicho edificio se encuentra localizado en la ciudad de Guayaquil el cual será prediseñado y modelado con rigidez en sus losas y sin rigidez en sus losas bajo los criterios sísmicos de la zona lo que permitirá observar el comportamiento de la estructura durante un evento sísmico.

3.5 Presentación y análisis de resultados

3.5.1 Procedimiento

Este proyecto de investigación "Diseño de edificaciones en hormigón armado regulares con sistemas de pórticos resistentes a momentos, sus efectos de la modelación de las losas y comportamiento sismo resistentes" tuvo el siguiente proceso presentado en un diagrama, para así alcanzar el objetivo de dicha investigación. Ver **Ilustración 2.**

3.5.2 Descripción de la edificación y planos

El objeto de estudio del presente proyecto consta de una edificación multifamiliar de 5 niveles ubicado en la ciudad de Guayaquil, la cual tiene una elevación de 15,00 metros cuya altura entre pisos es de 3,00 metros, visto en planta las dimensiones son de largo 16,40 metros y de ancho 18,80 metros dando un área de construcción de 308,32 metros cuadrados (Ver **Figura 15**).

El diseño de la edificación del presente análisis es una estructura de Hormigón Armado, la cual consta con un sistema estructural de Pórticos resistentes a momento, dicho sistema es conformado por columnas y vigas del mismo material anteriormente mencionado con losas alivianadas con espesor de 25 cm, subdivididos en 5 ejes en el lado X denominados A, B, C, D y E; y 5 ejes en el lado Y denominados 1, 2, 3, 4 y 5.

Según la ubicación de la estructura Se considera que esta cimentada sobre un suelo tipo C, cuyos parámetros se encuentran en la (NEC, 2015) Norma Ecuatoriana de la Construcción en la sección de peligro sísmico.

Para el prediseño de la edificación se usarán los siguientes datos y normas establecidas sin olvidar que dicho datos pueden ser variados al momento de realizar el modelado necesario para obtener un diseño estructural óptimo:

- Resistencia especificada a la compresión del Hormigón $f'c = 210 \frac{Kg}{cm^2}$
- Resistencia a la fluencia del refuerzo $f_y = 4200 \frac{Kg}{cm^2}$
- NEC-SE-HM-2015
- NEC-SE-DS-2015
- ACI 318S-14
- ACI 318-19

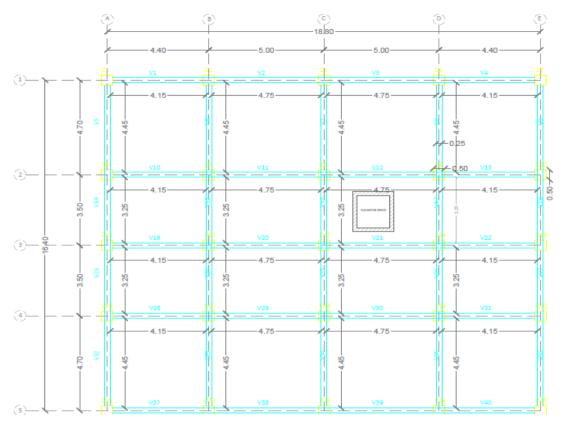


Figura 15: Implantación Estructural de la edificación

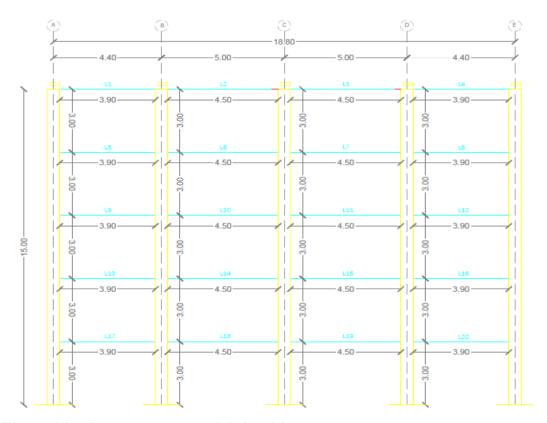


Figura 16: Elevación Estructural de la edificación



Figura 17: Planta Arquitectónico para todos los pisos

3.5.3 Predimensionamiento de losa

Para realizar el predimensionamiento. Al momento de prediseñar la losa maciza en una dirección se toma referencia de la norma (ACI 318-19= el capítulo 7 para el cálculo de h_{min} de la losa:

$$h_{min} = 0.03 \ x \ L_v$$
$$h_{min} = 15 \ cm$$

Donde:

• h_{min} : Altura mínima de la losa maciza (cm)

• L_v : Luz mayor de paño

Luego se procede a calcular el momento de inercia de la losa maciza, bajo los criterios de la ACI para predimensionar una losa alivianada la inercia de esta tiene que ser igual o mayor a la inercia obtenida de la losa maciza.

$$I_{maciza} = \frac{b x h^3}{12}$$

$$I_{maciza} = 28125 cm^4$$

Donde:

• h_{min} : Altura mínima de la losa maciza (cm)

• b : Ancho de losa asumiendo un metro

Para el cálculo de inercia de losa aliviana se aplica el teorema de Steiner, para obtener los resultados de áreas, centros de gravedad e inercia de cada elemento que conforma la losa. Asumiendo los siguientes datos: (Ver figura)

Datos:

• Ancho del nervio = 10cm

• Distancia entre ejes de nervios = 50cm

• Ancho de bloque = 40cm

• Espesor de losa de compresión = 5cm

• Altura total de losa alivianada = 25cm

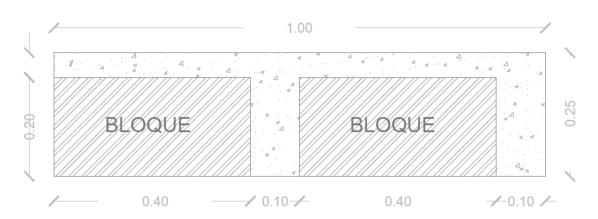


Figura 18: Corte de Losa Alivianada e = 25 cm

Tabla 6. *Losa alivianada*

	Area (cm2)	y (cm)	Ay (cm3)	Io (cm4)	d2 (cm2)	I total (cm4)
1	200	10	2000	6667	48.23	16312
2	200	10	2000	6667	48.23	16312
3	500	22.5	11250	1042	30.86	16474
	900		15250			49097
	Centro de gravedad	16.944	cm			

Nota: Cálculos de áreas, centro de gravedad y definición de la inercia de una losa alivianada de 25 cm.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Se cumple el teorema de Steiner ya que el valor de Inercia de la losa maciza es $28125\ cm^4$ y el de la losa alivianada es $49097\ cm^4$ para un espesor de 25 cm. Luego se halla la altura $h_{losa\ maciza}$ despejado de la ecuación de inercia

$$I_{losa\ alivianada} = \frac{b\ x\ h^3}{12}$$

$$h = \sqrt[3]{\frac{I_{losa\ alivianada} \times 12}{b}}$$
$$h = 18,06 = 18,00\ cm$$

3.5.4 Análisis y estimación de cargas

Se toma en consideración los siguientes pesos de carga muerta o permanente y cargas vivas que ejercen sobre la losa según la Norma Ecuatoriana de la construcción – Cargas (No sísmicas) (NEC, 2015).

3.5.4.1 Cargas Permanentes (muertas)

En este análisis, se toma en consideración el peso permanente que soportara la estructura, estas cargas son ejercidas por el peso propio de la losa, vigas, columnas, Instalaciones: sanitarias, eléctricas, mecánicas, SCI (Sistema Contra Incendio), enlucidos y mampostería. Conocida la altura de la losa se procede a calcular la carga muerta que tiene la losa.

$$W_D = \gamma_{concreto} x h_{losa \ maciza}$$

$$W_D = \frac{18}{100} m \, x \, 2400 \, \frac{kg}{m^3}$$

$$W_D = 432 \frac{kg}{m^2}$$

Tabla 7.Carga Muerta: Pesos de los materiales

Material	Peso Unitario $^{m{k}m{g}}/_{m{m}^2}$		
Mampostería	180		
Enlucido	40		
Instalación	40		

Nota: Pesos unitarios de materiales de construcción

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Dando un valor total de carga muerta $W_D = 692 \frac{kg}{m^2}$ o

3.5.4.2 Cargas Vivas

La NEC-SE-GG-CARGAS-SÍSMICAS (NEC, 2015), en la tabla 9, indica lo siguiente:

Tabla 8.Carga Viva: Sobrecarga mínimas

Ocupación o Uso	Carga Uniforme $^{m{k}m{g}}/_{m{m}^2}$	
Viviendas (Unifamiliares y Bifamiliares)	200	

Nota: Sobre cargas mínimas uniformemente distribuidas.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Para finalizar se obtiene el W_u que es el peso último, con la siguiente formula:

$$W_u = 1.2 D + 1.6 L$$

$$W_u = 1.15 \ ^T/_{m^2}$$

Donde:

• D: Carga permanente o muerta

• L: Carga viva

3.5.5 Predimensionamiento de columnas

Para estimar el área tributaria de se usa los valores ya obtenidos en la carga muerta y carga viva también se escoge los valores L1, L2, L3, L4

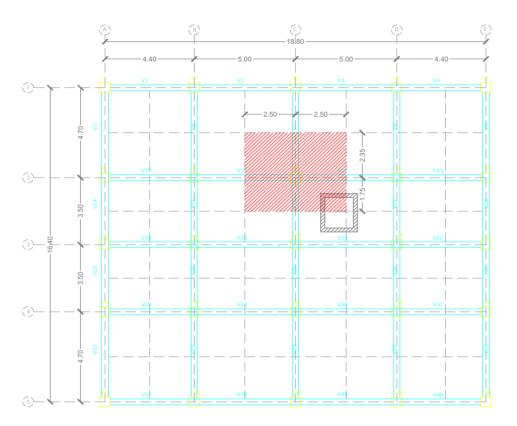


Figura 19: Proceso para obtener el área tributaria

Datos:

L1 = 5,00 mts

L2 = 5,00 mts

L3 = 4,70 mts

L4 = 3,50 mts

 $C_u = 5.74 \ ^T/_{m^2}$

$$At = \left(\frac{L_1}{2} + \frac{L_2}{2}\right) x \left(\frac{L_3}{2} + \frac{L_4}{2}\right)$$

$$At = 20,50 m^2$$

$$P_u = A_t \times C_u \times \frac{F_m}{0.85}$$

$$P_u = 159,20 \, Ton$$

Donde:

 F_m : Factor de mayoramiento por peso de columnas

Para obtener Ag requerido se toma en cuenta que el punto de balanceo se encuentra a 1/3 en la mayoría de diagramas de interacción dando como resultado la siguiente ecuación, se multiplica por 1000 si el Pu se trabaja en ton:

$$A_{g \ requerido} = \frac{P_u}{(\propto x f_c)}$$

$$A_{g\;requerido} = 2707.4829\;cm^2$$

$$A = a^2$$

$$a = \sqrt[2]{A}$$

$$a = 52.033 cm \approx 50 cm$$
$$b = 50 cm$$

Se escoge columnas de $50 \times 50 = 2500 \ cm^2$ para el prediseño de la edificación tanto para el primer y segundo piso.

Datos:

L1 = 5,00 mts

L2 = 5,00 mts

L3 = 4,70 mts

L4 = 3,50 mts

$$Cu = 3,44 \ ^{T}/_{m^{2}}$$

$$At = \left(\frac{L_1}{2} + \frac{L_2}{2}\right) x \left(\frac{L_3}{2} + \frac{L_4}{2}\right)$$

$$At = 20,50 m^2$$

$$P_u = A_t \times C_u \times \frac{F_m}{0.85}$$

$$P_u = 95,52 Ton$$

Donde:

 F_m : Factor de mayoramiento por peso de columnas

Para obtener Ag requerido se toma en cuenta que el punto de balanceo se encuentra a 1/3 en la mayoría de diagramas de interacción dando como resultado la siguiente ecuación, se multiplica por 1000 si el Pu se trabaja en ton:

$$A_{g \ requerido} = \frac{P_u}{(\propto x \ f_c)}$$

$$A_{g\;requerido}=1624.4897\;cm^2$$

$$A = a^2$$

$$a = \sqrt[2]{A}$$

$$a = 40.3049 cm \approx 40 cm$$
$$b = 40 cm$$

Para los pisos 3, 4, 5 se selecciona columnas de $40 \times 40 = 1600 \text{ cm}^2$

Se obtienen los siguientes datos:

Tabla 9. *Prediseño de columnas (50x50 cm)*

Ejes	Área	P	Secciones se	egún calculo	Secciones as	sumidas
Ejes	Tributaria	(Ton.)	b (cm)	h (cm)	b (cm)	h (cm)
A1-B1-C1-D1-E1						
A2-B2-C2-D2-E2	20,50 cm ²	159,20	52,033	52,033	50	50
A3-B3-C3-D3-E3	20,50 Cm	139,20	32,033	32,033	30	30
A4-B4-C4-D4-E4						

Nota: Secciones prediseñadas de columnas primero y segundo piso.

Tabla 10. Prediseño de columnas (40x40 cm)

Ejes	Área P		Secciones según calculo		Secciones asumidas	
	Tributaria	(Ton.)	b (cm)	h (cm)	b (cm)	h (cm)
A1-B1-C1-D1-E1						
A2-B2-C2-D2-E2	20,50 cm ²	95,52	40,3049	40,3049	40	40
A3-B3-C3-D3-E3	20,30 cm²	93,32	40,3049	40,3049	40	40
A4-B4-C4-D4-E4						

Nota: Secciones prediseñadas de columnas tercero, cuarto y quinto piso.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

3.5.6 Predimensionamiento de vigas

Para el prediseño de la viga se tomará los siguientes datos y criterios tomados del ACI – 318-19 capítulo 9, aplicando el método de pórtico equivalente se calculará el momento estático y momento de diseño:

Datos:

 $L_{v} = 4,70 \text{ mts}$

 $L_1 = 5,00 \text{ mts}$

 $L_2 = 5,00 \text{ mts}$

 $b_{col} = 0.50 \text{mts}$

b = 0.30mts

$$C_u = 1.15 \ ^T/_{m^2}$$

Se obtiene L:

$$L = \frac{L_1 + L_2}{2}$$

$$L = 5 m$$

Calculo del momento de estático y momento de diseño.

$$M_e = \frac{L * Lv^2}{8} * Cu$$

$$M_e = 12.66 \text{ Ton/m}$$

$$M_d = 0.85 * 0.65 * Me$$

 $M_d = 8.39 \ Ton/m$

Bajo los criterios establecidos en la ACI – 318-19 se asume y estiman los siguientes valores para el prediseño de la viga:

$$d = 40.70 cm$$

 $rec = 2.50 cm$

Se procede con el cálculo de Acero mínimo.

$$As_{min.} = \frac{14}{f_y} * b * d$$

$$As_{min} = 4.07 \ cm^2$$

3.5.7 Secciones de elementos estructurales obtenidas por el prediseño

Se define las siguientes dimensiones obtenidas a través del cálculo del prediseño:

Tabla 11. Secciones definidas por el prediseño

DI GOG	VIGAS		COLUMNAS		T 001
PISOS	Base (b)	Altura (h)	BASE (b)	Altura (h)	LOSA
1-2	30 cm	40 cm	50 cm	50 cm	Alivianada con un
3-4-5	30 cm	40 cm	40 cm	40 cm	espesor de 25 cm

Nota: Dimensiones de Vigas, Columnas y Losa.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

3.5.8 Espectro de diseño elástico e inelástico

Para elaborar los espectros de diseño elásticos e inelásticos se tomará de la NEC-SE-DS los criterios necesarios para la configuración estructural, se tomará el valor para $\emptyset_{Ei} = \emptyset_{Pi} = 1$, cuando la altura es constante en todos los niveles y el centro de rigidez es igual al centro de masa se usará el valor de 1 tanto en elevación como en planta respectivamente.

La edificación se encuentra ubicada en la ciudad de Guayaquil que está en la zona sísmica V, valor factor Z de 0,40 cuya caracterización de peligro sísmico es alta y los valores de los Coeficientes de perfil de suelo que son:

- ullet F_a Coeficiente de amplificación de suelo en la zona de perido corto.
- ullet F_d Desplazamiento para diseño en roca.
- F_s Comportamiento no lineal de los suelos.

Tabla 12. *Tipo de suelo y factores de sitio*

Valor factor Z	0,40
Tipo de Suelo	С
F_a	1,20
F_d	1,11
$F_{\mathcal{S}}$	1,11
r	1,00
n	1,80

Nota: Factor Z, tipo de suelo, coeficientes de amplificación

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Una vez encontrado los valores de acuerdo a las especificaciones en la NEC-SE-DS, se establecen los siguientes cálculos que servirá para graficar el espectro elástico horizontal de diseño en aceleraciones:

• T_0 y T_C : Periodo límite de vibración en el espectro elástico de aceleraciones que representa el sismo de diseño.

$$T_0 = 0.10 \ x \ F_s \ x \ \frac{F_d}{F_a} = 0.103$$

$$T_c = 0.55 x F_s x \frac{F_d}{F_a} = 0.565$$

• T_L : Periodo límite de vibración utilizado para la definición de espectro de repuesta en desplazamientos.

$$T_L = 2.4 \ x \ F_d = 2.665$$

• S_a : Espectro de respuesta elástico de aceleraciones, depende del período o modo de vibración de la estructura y un período fundamental de $0 \le T \le T_C$.

$$S_a = \eta \, x \, Z \, x \, F_a = 0.864$$

• El valor del S_a para un período fundamental $T \ge T_C$, como S_a va ir disminuyendo a medida que el T aumento.

$$S_a = \eta \ x \ Z \ x \ F_a \ x \ (\frac{T_c}{T})^r = 0,976$$
; Cuando T = 5

Figura 20: Espectro de Diseño, suelo tipo C

Tabla 13. *Espectro elástico y espectro inelástico*

T	Sa	Sa Diseño
0.000	0.864	0.108
0.100	0.864	0.108
0.200	0.864	0.108
0.300	0.864	0.108
0.400	0.864	0.108
0.500	0.864	0.108
0.565	0.864	0.108
0.600	0.813	0.102
0.700	0.697	0.087
0.800	0.610	0.076
0.900	0.542	0.068
1.000	0.488	0.061
1.100	0.444	0.055
1.200	0.407	0.051
1.300	0.375	0.047
1.400	0.349	0.044
1.500	0.325	0.041
1.600	0.305	0.038
1.700	0.287	0.036
1.800	0.271	0.034
1.900	0.257	0.032
2.000	0.244	0.030
2.100	0.232	0.029
2.200	0.222	0.028
2.300	0.212	0.027
2.400	0.203	0.025
2.500	0.195	0.024
2.600	0.188	0.023
2.664	0.183	0.023
2.700	0.181	0.023
2.800	0.174	0.022
2.900	0.168	0.021
3.000	0.163	0.020
3.100	0.157	0.020
3.200	0.152	0.019
3.300	0.148	0.018
3.400	0.144	0.018
3.500	0.139	0.017
3.600	0.136	0.017
3.700	0.132	0.016
3.800	0.128	0.016
3.900	0.125	0.016

T	Sa	Sa Diseño
4.000	0.122	0.015
4.100	0.119	0.015
4.200	0.116	0.015
4.300	0.113	0.014
4.400	0.111	0.014
4.500	0.108	0.014
4.600	0.106	0.013
4.700	0.104	0.013
4.800	0.102	0.013
4.900	0.100	0.012
5.000	0.098	0.012
5.100	0.096	0.012
5.200	0.094	0.012
5.300	0.092	0.012

Nota: Calculo del espectro elástico e inelástico obtenido a través de Excel

Elaborado por: (Alfonzo & Barrionuevo,

2023)

3.5.9 Determinación de Cortante Basal de Diseño V.

$$V = \frac{I \times S_a}{R \times \phi_P \times \phi_E} \times W$$

$$V = 41 \, Ton$$

3.6. Modelamiento de la estructura en ETABS

En el siguiente apartado se mostrará el modelado del prediseño de la edificación anteriormente calculado y establecido. El software ETABS, proporciona el análisis tridimensional de la edificación, brindando la reacción que tendrá la misma al momento de presentarse un evento sísmico, cuyos elementos predimensionado puede tender a variar con dicho análisis con el objetivo de otorgar el diseño óptimo para la estructura.

3.6.7. Definición de materiales e Ingreso de Secciones

Se toma en cuenta los datos, obtenidos a través del prediseño y se procede a ingresarlos:

- ✓ Resistencia del Hormigón. $Fc = 210 \frac{Kg}{cm^2}$
- ✓ Resistencia a la fluencia del refuerzo. $f_y = 4200 \frac{kg}{cm^2}$
- ✓ Módulo de Elasticidad. $Ec = 2 \ 100 \ 000 \ ^{Ton}/_{m^2}$
- ✓ Vigas 30 cm x 40 cm
- ✓ Columnas 50 cm x 50 cm 1-2 piso
- ✓ Columnas 40 cm x 40 cm 3-4-5 piso
- ✓ Losa Alivianada e = 25 cm con rigidez y sin rigidez.

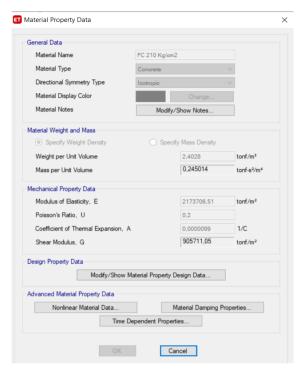


Figura 21: Ingreso de la resistencia a la compresión del Hormigón Armado

Figura 22: Ingreso de la resistencia a la fluencia del Hormigón Armado

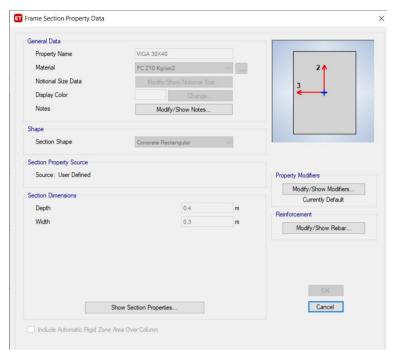


Figura 23: Vigas 30 x 30 cm, en ETABS

Figura 24: Columnas 50 x 50 cm, en ETABS

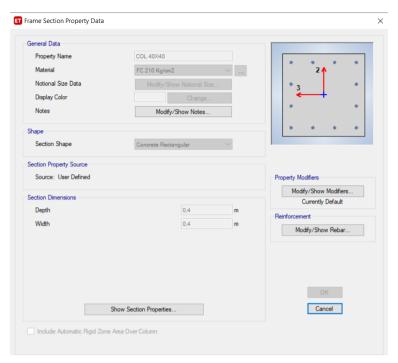
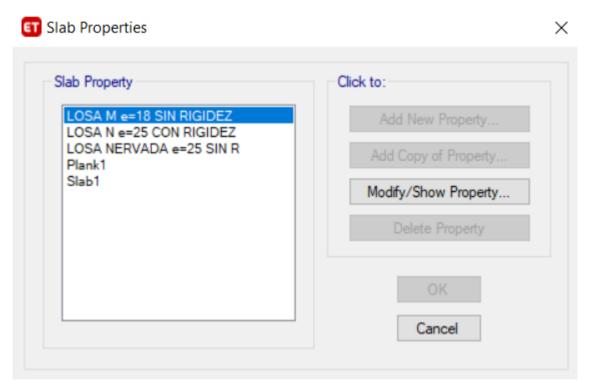



Figura 25: Columnas 40 x 40 cm, en ETABS Elaborado: (Alfonzo & Barrionuevo, 2023)

Figura 26: Ingreso de propiedades y secciones de las losas nervadas y maciza, con rigidez y sin rigidez

Property/Stiffness Modifiers for Analys	sis
Membrane f11 Direction	1
Membrane f22 Direction	1
Membrane f12 Direction	1
Bending m11 Direction	0,01
Bending m22 Direction	0,01
Bending m12 Direction	0,01
Shear v13 Direction	0,01
Shear v23 Direction	0,01
Mass	1
Weight	1

Figura 28: Valores de Bending y Shear con 0,001 el cual es considerado sin rigidez en la losa

Property/Stiffness Modifiers for Analys	sis
Membrane f11 Direction	1
Membrane f22 Direction	1
Membrane f12 Direction	1
Bending m11 Direction	1
Bending m22 Direction	1
Bending m12 Direction	1
Shear v13 Direction	1
Shear v23 Direction	1
Mass	1
Weight	1

Figura 27: Valores de Bending y Shear con 1,000 el cual se considera con rigidez en la losa

3.6.8. Definición ejes y elevación de la estructura

La edificación en estudio es de uso multifamiliar regular en planta y elevación, diseñada en hormigón armado, se define la distancia tanto en x con 18.80 m & en y con 16.40 m, con altura de 3.00 m entre cada piso, luego se identifica las columnas y vigas dentro del dibujo. Ver **figura 29**

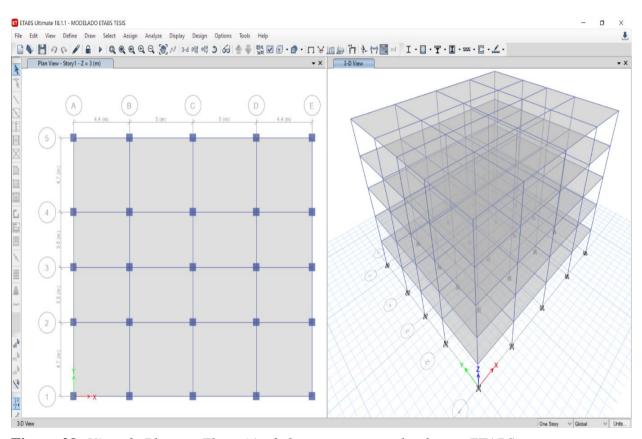


Figura 29: Vista de Planta y Elevación de la estructura en el software ETABS

3.6.9. Análisis de cargas en el software ETABS

El análisis de cargas fue evaluado con las siguientes combinaciones que lo indica la (NEC, 2015) en el capítulo de cargas sísmicas:

- I. 1,4 D
- II. 1,2 D + 1,6 L
- III. 1,2 D + L
- IV. 1,2D + L
- V. 1,2 D + Ex + L
- VI. 1,2 D + Ey + L
- VII. 0,9 D
- VIII. 0.9 D + Ex
 - IX. 0.9 D + Ey

3.7. Análisis y revisión del modelo matemático

Siguiendo el proceso se analiza la estructura que tendrá un valor de rigidez de 1,00, a la cual se considera que es la adecuada y la de valor en rigidez de 0,01 que es la edificación sin rigidez, en los siguientes ítems se presentan los resultados obtenidos con el modelamiento de ambas:

3.7.1. Cambio de secciones de elementos estructurales

A través del modelado de la estructura con las secciones predimensionada en el software ETABS, se opta por cambiar las secciones de las vigas, ya que las dichas predimensiones no cumplieron ciertos parámetros, al momento de ocurrir un movimiento telúrico. Es por eso que las vigas quedan de las siguientes dimensiones:

Tabla 14. Cambios de secciones de vigas por el modelamiento en ETABS

VIGAS INTERIORES

VIGAS BORDE EN X & Y

Base (b)	Altura (h)	Base (b)	Altura (h)
25 cm	40 cm	35 cm	45 cm

Nota: Secciones de vigas definidas.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

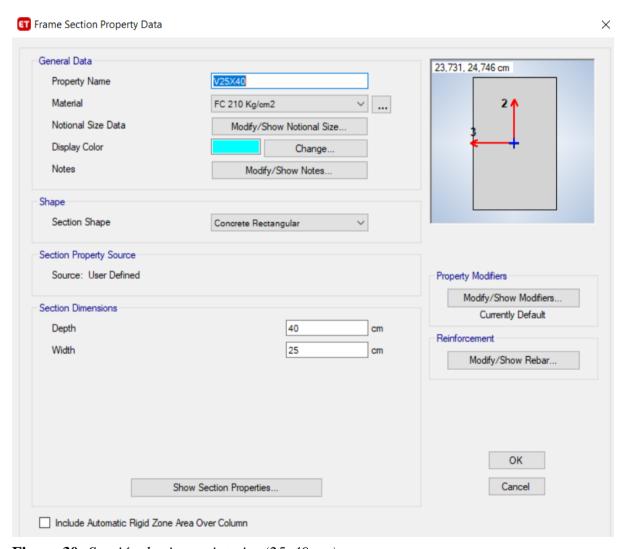
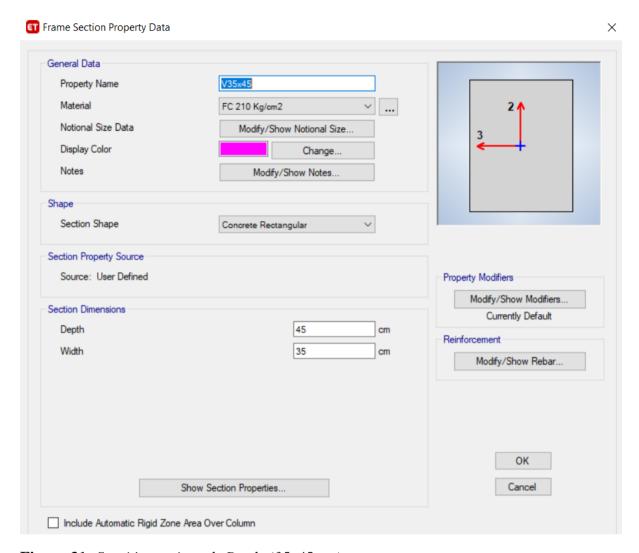



Figura 30: Sección de viga en interior (25x40 cm)

Figura 31: *Sección en vigas de Borde (35x45 cm)*

3.7.2. Estructura considerando rigidez en su losa

En estos sub índices se presentan las tablas con los resultados obtenidos a través de la modelación de la estructura de hormigón armado en el software de análisis estructural ETABS, cabe recalcar que los siguientes datos son calculados con las nuevas secciones definidas y con la rigidez de las losas con un valor de 1,000 que indica el 100% de la rigidez.

3.7.2.1. Periodo de la estructura

Tabla 15.

Periodos de Vibración y Frecuencias con Rigidez

	•	=	
Caso	Modo	Periodos	Frecuencia
	1.1040	seg.	cir./seg.
Modal	1	0.644	1.553
Modal	2	0.604	1.656
Modal	3	0.512	1.952
Modal	4	0.197	5.088
Modal	5	0.186	5.367
Modal	6	0.16	6.26
Modal	7	0.103	9.687
Modal	8	0.1	10.048
Modal	9	0.087	11.53
Modal	10	0.066	15.178
Modal	11	0.065	15.456
Modal	12	0.057	17.532
Modal	13	0.05	20.077
Modal	14	0.05	20.169
Modal	15	0.044	22.728

Nota: Periodos de vibración y frecuencias con rigidez obtenidos del software ETABS.

3.7.2.2. Derivas de la estructura

Tabla 16.Derivas con Rigidez

Niveles de piso	Dirección de sismo (U)	Direction	Drift	Deriva	Deriva Max.	Comprobación (d > dmax.)
Nivel 5	UX	X	0.00046	0.00276	0.02	OK
Nivel 5	UY	Y	0.000515	0.00309	0.02	OK
Nivel 4	UX	X	0.00076	0.00456	0.02	OK
Nivel 4	UY	Y	0.00083	0.00498	0.02	OK
Nivel 3	UX	X	0.001003	0.006018	0.02	OK
Nivel 3	UY	Y	0.001084	0.006504	0.02	OK
Nivel 2	UX	X	0.00108	0.00648	0.02	OK
Nivel 2	UY	Y	0.001152	0.006912	0.02	OK
Nivel 1	UX	X	0.000672	0.004032	0.02	OK
Nivel 1	UY	Y	0.000692	0.004152	0.02	OK

Nota: Derivas con rigidez obtenidos del software ETABS.

3.7.2.3. Reacciones

Tabla 17. *Reacciones con Rigidez.*

Combinaciones De Cargas	Fuerzas en X (Ton)	Fuerzas en Y (Ton)	Fuerzas en Z (Ton)	Momento en X (Ton-m)	Momento en Y (Ton-m)	Momento en Z (Ton-m)
Carga Muerta	0.000	0.000	1189.967	9757.732	-11185.692	0.000
Carga Viva	0.000	0.000	308.320	2528.224	-2898.208	0.000
SX	-93.395	0.000	0.000	0.000	-1038.414	842.426
SY	0.000	-81.721	0.000	914.656	0.000	-844.994
Sismo X (UX)	97.657	0.000	0.000	0.000	1045.779	800.788
Sismo Y (UY)	0.000	91.700	0.000	982.919	0.000	861.984
Comb1	0.000	0.000	1665.954	13660.824	-15659.969	0.000
Comb2	0.000	0.000	1921.273	15754.436	-18059.963	0.000
Comb3	0.000	0.000	1736.281	14237.502	-16321.039	0.000
Comb4	0.000	0.000	1736.281	14237.502	-16321.039	0.000
Comb5	97.657	0.000	1736.281	14237.502	-15275.260	800.788
Comb5	-97.657	0.000	1736.281	14237.502	-17366.817	-800.788
Comb6	0.000	91.700	1736.281	15220.421	-16321.039	861.984
Comb6	0.000	-91.700	1736.281	13254.582	-16321.039	-861.984
Comb7	0.000	0.000	1070.971	8781.958	-10067.123	0.000
Comb8	97.657	0.000	1070.971	8781.958	-9021.344	800.788
Comb8	-97.657	0.000	1070.971	8781.958	-11112.902	-800.788
Comb9	0.000	91.700	1070.971	9764.878	-10067.123	861.984
Comb9	0.000	-91.700	1070.971	7799.039	-10067.123	-861.984

Nota: Reacciones con rigidez obtenidos del software ETABS.

3.7.2.4. Cuantía longitudinal de vigas

Tabla 18.Cuantía longitudinal con rigidez vigas Nivel 5

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
				End-I	-158.269	ENV	1.51	81.800	ENV	0.78
В3	B31	31	V25X40	Middle	0	ENV	0.37	99.854	Comb2	0.95
				End-J	-153.612	ENV	1.47	34.346	ENV	0.73
				End-I	-196.544	ENV	1.88	9.551	ENV	0.93
	B32	32	V25X40	Middle	0	ENV	0.47	129.435	Comb2	1.23
N' 1 5				End-J	-201.052	ENV	1.93	6.887	ENV	0.95
Nivel 5				End-I	-201.052	ENV	1.93	6.887	ENV	0.95
	B33	33	V25X40	Middle	0	ENV	0.47	129.435	Comb2	1.23
				End-J	-196.544	ENV	1.88	9.551	ENV	0.93
_				End-I	-153.612	ENV	1.47	34.346	ENV	0.73
	B34	34	V25X40	Middle	-1.665	ENV	0.37	99.854	Comb2	0.95
				End-J	-158.269	ENV	1.51	81.800	ENV	0.78

Nota: Cuantías Nivel 5 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 19. Cuantía longitudinal con rigidez vigas Nivel 4

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm ²)
				End-I	-266.418	ENV	2.57	95.939	ENV	1.27
	B31	71	V25X40	Middle	-21.257	ENV	0.63	107.546	ENV	1.02
				End-J	-215.847	ENV	2.07	122.912	ENV	1.17
				End-I	-272.921	ENV	2.63	78.152	ENV	1.3
	B32	72	V25X40	Middle	-18.166	ENV	0.65	129.213	Comb2	1.23
NT 14				End-J	-271.336	ENV	2.62	78.915	ENV	1.29
Nivel 4				End-I	-271.336	ENV	2.62	78.915	ENV	1.29
	B33	73	V25X40	Middle	-17.18	ENV	0.65	129.213	Comb2	1.23
				End-J	-272.921	ENV	2.63	78.152	ENV	1.3
			V25X40	End-I	-215.847	ENV	2.07	122.912	ENV	1.17
	B34	74		Middle	-39.493	ENV	0.63	107.546	ENV	1.02
				End-J	-266.418	ENV	2.57	95.939	ENV	1.27

Nota: Cuantías Nivel 4 obtenidos del software ETABS.

Tabla 20.Cuantía Longitudinal con rigidez vigas Nivel 3

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
				End-I	-336.229	ENV	3.14	185.335	ENV	1.77
В3	B31	111	V25X40	Middle	-49.393	ENV	0.8	136.385	ENV	1.3
				End-J	-305.222	ENV	2.95	198.606	ENV	1.9
				End-I	-340.735	ENV	3.14	147.403	ENV	1.63
	B32	112	V25X40	Middle	-43.038	ENV	0.81	136.227	ENV	1.3
Nr1 2				End-J	-340.628	ENV	3.14	147.611	ENV	1.63
Nivel 3				End-I	-340.628	ENV	3.14	147.611	ENV	1.63
	B33	113	V25X40	Middle	-40.683	ENV	0.81	136.227	ENV	1.3
				End-J	-340.735	ENV	3.14	147.403	ENV	1.63
_			14 V25X40	End-I	-305.222	ENV	2.95	198.606	ENV	1.9
	B34	114		Middle	-68.524	ENV	0.8	136.385	ENV	1.3
				End-J	-336.229	ENV	3.14	185.335	ENV	1.77

Nota: Cuantías Nivel 3 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 21.Cuantía Longitudinal con rigidez vigas Nivel 2

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
			V25X40	End-I	-383.417	ENV	3.14	240.663	ENV	2.31
	B31	151		Middle	-68.892	ENV	0.91	158.119	ENV	1.51
				End-J	-364.385	ENV	3.14	247.308	ENV	2.38
_				End-I	-383.913	ENV	3.14	191.300	ENV	1.84
	B32	152	V25X40	Middle	-58.907	ENV	0.91	151.407	ENV	1.44
Nr. 10				End-J	-384.778	ENV	3.14	190.924	ENV	1.84
Nivel 2				End-I	-384.778	ENV	3.14	190.924	ENV	1.84
	B33	153	V25X40	Middle	-55.682	ENV	0.91	151.407	ENV	1.44
				End-J	-383.913	ENV	3.14	191.300	ENV	1.84
				End-I	-364.385	ENV	3.14	247.308	ENV	2.38
	B34	154	V25X40	Middle	-87.95	ENV	0.91	158.119	ENV	1.51
				End-J	-383.417	ENV	3.14	240.663	ENV	2.31

Nota: Cuantías Nivel 2 obtenidos del software ETABS.

Tabla 22.Cuantía Longitudinal con rigidez vigas Nivel 1

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
			V25X40	End-I	-349.992	ENV	3.14	231.629	ENV	2.23
В	B31	191		Middle	-64.069	ENV	0.85	158.076	ENV	1.51
				End-J	-357.745	ENV	3.14	220.471	ENV	2.12
				End-I	-361.144	ENV	3.14	170.166	ENV	1.73
	B32	192	V25X40	Middle	-51.979	ENV	0.86	143.473	ENV	1.37
NI*1 1				End-J	-364.185	ENV	3.14	169.312	ENV	1.74
Nivel 1				End-I	-364.185	ENV	3.14	169.312	ENV	1.74
	B33	193	V25X40	Middle	-47.958	ENV	0.86	143.473	ENV	1.37
				End-J	-361.144	ENV	3.14	170.166	ENV	1.73
				End-I	-357.745	ENV	3.14	220.471	ENV	2.12
	B34	194	4 V25X40	Middle	-77.742	ENV	0.85	158.076	ENV	1.51
				End-J	-349.992	ENV	3.14	231.629	ENV	2.23

Nota: Cuantías Nivel 1 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

3.7.2.5. Cuantías longitudinales en columnas

Tabla 23.Cuantía Longitudinal en columnas con rigidez Nivel 5

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	C3	305	COL	Top	4.0499	421.272	-731.622	ENV	1 %
		303	50X50	Bottom	5.4285	-300.323	-629.079	ENV	1 %
	C8	310	COL	Top	8.6531	300.045	-790.666	ENV	1 %
		310	50X50	Bottom	10.0588	-193.144	-459.411	ENV	1 %
Nivel 5	C13	315	COL	Top	9.3421	229.47	-799.522	ENV	1 %
MIVELS	C13	313	50X50	Bottom	19.9383	112.711	473.756	ENV	1 %
	C18	320	COL	Top	8.6531	-300.045	790.666	ENV	1 %
	C16	320	50X50	Bottom	10.0588	193.144	459.411	ENV	1 %
	C23	325	COL	Top	4.0499	-421.272	-731.622	ENV	1 %
	C23	323	50X50	Bottom	5.4285	300.323	629.079	ENV	1 %

Nota: Cuantías longitudinales Nivel 5 obtenidos del software ETABS.

Tabla 24.Cuantía Longitudinal en columnas con rigidez Nivel 4

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	C3	280	COL	Тор	9.0741	383.349	-629.079	ENV	1 %
		50X50	Bottom	10.4527	-350.54	-821.39	ENV	1 %	
	C8	285	COL	Тор	36.0289	395.848	-459.411	ENV	1 %
	C8	203	50X50	Bottom	37.9031	-345.423	553.74	ENV	1 %
Nivel 4	C13	290	COL	Тор	38.3457	-338.257	473.756	ENV	1 %
MIVEI 4	C13	290	50X50	Bottom	40.2199	-263.329	566.372	ENV	1 %
	C18	295	COL	Тор	36.0289	-395.848	-459.411	ENV	1 %
	C16	293	50X50	Bottom	37.9031	345.423	553.74	ENV	1 %
C23	C23	300	COL	Тор	9.0741	-383.349	629.079	ENV	1 %
	C23	300	50X50	Bottom	10.4527	350.54	821.39	ENV	1 %

Nota: Cuantías longitudinales Nivel 4 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 25.Cuantía Longitudinal en columnas con rigidez Nivel 3

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	C3	255	COL	Тор	13.2493	434.869	-821.39	ENV	1 %
		255	50X50	Bottom	14.6279	-468.828	906.138	ENV	1 %
	260	COL	Тор	55.0057	466.445	553.74	ENV	1 %	
	Co	200	50X50	Bottom	56.8799	-506.15	613.277	ENV	1 %
Nivel 3	C13	265	COL	Тор	58.4761	396.691	-566.372	ENV	1 %
Nivei 5	C13	203	50X50	Bottom	60.3503	-412.951	624.918	ENV	1 %
	C18	270	COL	Тор	55.0057	-466.445	-553.74	ENV	1 %
	CIO	270	50X50	Bottom	56.8799	506.15	613.277	ENV	1 %
(C22	275	COL	Тор	13.2493	-434.869	821.39	ENV	1 %
	C23	275	50X50	Bottom	14.6279	468.828	906.138	ENV	1 %

Nota: Cuantías longitudinales Nivel 3 obtenidos del software ETABS.

Tabla 26.Cuantía Longitudinal en columnas con rigidez Nivel 2

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	С3	230	COL	Тор	44.8468	396.077	906.138	ENV	1 %
	CS	230	50X50	Bottom	18.2845	-629.336	883.681	ENV	1 %
	C8	235	COL	Тор	74.0136	449.584	-613.277	ENV	1 %
		255	50X50	Bottom	75.8877	-671.587	589.543	ENV	1 %
Nivel 2	C13	240	COL	Тор	78.5599	-376.166	624.918	ENV	1 %
Nivei 2	C13	240	50X50	Bottom	80.4341	568.627	588.861	ENV	1 %
	C18	245	COL	Top	74.0136	-449.584	613.277	ENV	1 %
_	C16	243	50X50	Bottom	75.8877	671.587	-589.543	ENV	1 %
	C23	250	COL	Тор	44.8468	-396.077	-906.138	ENV	1 %
	C23	230	50X50	Bottom	18.2845	629.336	883.681	ENV	1 %

Nota: Cuantías longitudinales Nivel 2 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 27.Cuantías Longitudinal en columnas con rigidez Nivel 1

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	C2	205	COL	Тор	56.8975	160.035	-854.814	ENV	1 %
	C3	205	50X50	Bottom	21.9508	-908.273	981.879	ENV	1 %
	C8	210	COL	Тор	93.0279	178.029	569.727	ENV	1 %
	Co	210	50X50	Bottom	94.9021	-906.877	887.677	ENV	1 %
Nivel 1	C13	215	COL	Top	98.4565	-132.182	-579.067	ENV	1 %
Nivei 1	C13	213	50X50	Bottom	100.3306	879.773	887.433	ENV	1 %
	C18	220	COL	Top	93.0279	-178.029	-569.727	ENV	1 %
	C16	220	50X50	Bottom	94.9021	906.877	887.677	ENV	1 %
_	C23	225	COL	Тор	56.8975	-160.035	-854.814	ENV	1 %
	C23	223	50X50	Bottom	21.9508	908.273	981.879	ENV	1 %

Nota: Cuantías longitudinales Nivel 1 obtenidos del software ETABS.

3.7.2.6. Cuantía transversal de vigas

Tabla 28.Cuantías Transversales con rigidez vigas Nivel 5

Piso	Cód.	Núm. Viga	Sección	Ubicación	V (Ton)	V Combo	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsion (cm²)
				End-I	2.004	ENV	0.017	0.568	ENV	0	0.568	ENV	0
	B31	31	V25X40	Middle	1.517	ENV	0.0128	2.419	ENV	0	2.419	ENV	0
				End-J	1.907	Comb9	0.0161	4.522	ENV	0	4.522	ENV	0
_				End-I	2.836	ENV	0.0209	1.129	ENV	0	1.129	ENV	0
	B32	32	V25X40	Middle	1.753	ENV	0.0148	1.133	ENV	0	1.133	ENV	0
Nivel				End-J	3.100	ENV	0.0209	3.586	ENV	0	3.586	ENV	0
5				End-I	2.831	ENV	0.0209	1.133	ENV	0	1.133	ENV	0
	B33	33	V25X40	Middle	1.765	ENV	0.0149	1.129	ENV	0	1.129	ENV	0
				End-J	3.105	ENV	0.0209	3.579	ENV	0	3.579	ENV	0
				End-I	2.004	ENV	0.017	2.419	ENV	0	2.419	ENV	0
	B34	34	V25X40	Middle	1.521	ENV	0.0129	0.568	ENV	0	0.568	ENV	0
	231	34		End-J	1.913	Comb9	0.0162	1.300	ENV	0	1.300	ENV	0

Nota: Cuantías Nivel 5 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 29.
Cuantía Transversales con rigidez vigas Nivel 4

Piso	Cód.	Núm. Viga	Sección	Ubicación	V (Ton)	V Combo	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsion (cm²)
				End-I	3.195	ENV	0.027	0.125	ENV	0	0.125	ENV	0
	B31	71	V25X40	Middle	2.438	ENV	0.0206	3.717	ENV	0	3.717	ENV	0
				End-J	3.326	ENV	0.0282	7.711	ENV	0	7.711	ENV	0
				End-I	3.250	Comb6	0.0275	2.100	ENV	0	2.100	ENV	0
	B32	72	V25X40	Middle	2.248	Comb6	0.019	2.100	ENV	0	2.100	ENV	0
Nivel				End-J	3.240	Comb6	0.0274	6.657	ENV	0	6.657	ENV	0
4				End-I	3.240	Comb6	0.0274	2.100	ENV	0	2.100	ENV	0
	B33	73	V25X40	Middle	2.248	Comb6	0.019	2.100	ENV	0	2.100	ENV	0
				End-J	3.250	Comb6	0.0275	6.654	ENV	0	6.654	ENV	0
				End-I	3.123	Comb6	0.0264	3.717	ENV	0	3.717	ENV	0
	B34	74	V25X40	Middle	2.481	ENV	0.021	0.125	ENV	0	0.125	ENV	0
				End-J	3.406	ENV	0.0288	3.596	ENV	0	3.596	ENV	0

Nota: Cuantías Nivel 4 obtenidos del software ETABS.

Tabla 30.Cuantías Transversales con rigidez vigas Nivel 3

Piso	Cód.	Núm. Viga	Sección	Ubicación	V (Ton)	V Combo	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsion (cm²)
				End-I	3.798	ENV	0.0322	0.349	ENV	0	0.349	ENV	0
	B31	111	V25X40	Middle	3.060	ENV	0.0259	5.570	ENV	0	5.570	ENV	0
				End-J	3.950	ENV	0.0334	11.376	ENV	0	11.376	ENV	0
				End-I	3.622	ENV	0.0307	3.053	ENV	0	3.053	ENV	0
	B32	112	V25X40	Middle	2.787	ENV	0.0236	3.059	ENV	0	3.059	ENV	0
Nivel				End-J	3.885	ENV	0.0329	9.690	ENV	0	9.690	ENV	0
3				End-I	3.611	ENV	0.0306	3.059	ENV	0	3.059	ENV	0
	B33	113	V25X40	Middle	2.780	ENV	0.0235	3.053	ENV	0	3.053	ENV	0
				End-J	3.896	ENV	0.033	9.678	ENV	0	9.678	ENV	0
_				End-I	3.745	ENV	0.0317	5.570	ENV	0	5.570	ENV	0
	B34	114	V25X40	Middle	3.082	ENV	0.0261	0.349	ENV	0	0.349	ENV	0
				End-J	4.004	ENV	0.0339	5.040	ENV	0	5.040	ENV	0

Nota: Cuantías Nivel 3 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 31.Cuantías Transversal con rigidez vigas Nivel 2

Piso	Cód.	Núm. Viga	Sección	Ubicación	V (Ton)	V Combo	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsion (cm²)
				End-I	4.014	ENV	0.034	0.445	ENV	0	0.445	ENV	0
	B31	151	V25X40	Middle	3.292	ENV	0.0279	6.696	ENV	0	6.696	ENV	0
				End-J	4.185	ENV	0.0354	13.642	ENV	0	13.642	ENV	0
				End-I	3.707	ENV	0.0314	3.649	ENV	0	3.649	ENV	0
	B32	152	V25X40	Middle	2.875	ENV	0.0243	3.657	ENV	0	3.657	ENV	0
Nivel				End-J	3.972	ENV	0.0336	11.585	ENV	0	11.585	ENV	0
2				End-I	3.698	ENV	0.0313	3.657	ENV	0	3.657	ENV	0
	B33	153	V25X40	Middle	2.867	ENV	0.0243	3.649	ENV	0	3.649	ENV	0
				End-J	3.981	ENV	0.0337	11.570	ENV	0	11.570	ENV	0
_				End-I	3.977	ENV	0.0337	6.696	ENV	0	6.696	ENV	0
	B34	154	V25X40	Middle	3.302	ENV	0.028	0.445	ENV	0	0.445	ENV	0
				End-J	4.222	ENV	0.0357	6.006	ENV	0	6.006	ENV	0

Nota: Cuantías Nivel 2 obtenidos del software ETABS.

Tabla 32.Cuantía Transversal con rigidez vigas Nivel 1

Piso	Cód.	Núm. Viga	Sección	Ubicación	V (Ton)	V Combo	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsion (cm²)
				End-I	3.926	ENV	0.0332	0.757	ENV	0	0.757	ENV	0
	B31	191	V25X40	Middle	3.232	ENV	0.0274	6.364	ENV	0	6.364	ENV	0
				End-J	4.128	ENV	0.0349	12.620	ENV	0	12.620	ENV	0
				End-I	3.659	ENV	0.031	3.295	ENV	0	3.295	ENV	0
	B32	192	V25X40	Middle	2.832	ENV	0.024	3.308	ENV	0	3.308	ENV	0
Nivel				End-J	3.926	ENV	0.0332	10.477	ENV	0	10.477	ENV	0
1				End-I	3.653	ENV	0.0309	3.308	ENV	0	3.308	ENV	0
	B33	193	V25X40	Middle	2.824	ENV	0.0239	3.295	ENV	0	3.295	ENV	0
				End-J	3.932	ENV	0.0333	10.456	ENV	0	10.456	ENV	0
				End-I	3.924	ENV	0.0332	6.364	ENV	0	6.364	ENV	0
	B34	194	V25X40	Middle	3.213	ENV	0.0272	0.757	ENV	0	0.757	ENV	0
				End-J	4.130	ENV	0.035	5.008	ENV	0	5.008	ENV	0

Nota: Cuantías Nivel 1 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

3.7.2.7. Cuantía transversal en columna

Tabla 33.

Cuantía transversal de columnas con rigidez Nivel 5

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	С3	305	COL	Тор	1.9352	ENV	0.0135	5.6208	ENV	0.0391
	CS	303	50X50	Bottom	1.9352	ENV	0.0135	5.6208	ENV	0.0391
C8	210	COL	Тор	3.3412	ENV	0.0233	6.0488	ENV	0.0421	
		310	50X50	Bottom	3.3412	ENV	0.0233	6.0488	ENV	0.0421
Nivel 5		315	COL	Top	3.6851	ENV	0.0257	6.1164	ENV	0.0426
Nivei 5	C13		50X50	Bottom	3.6851	ENV	0.0257	6.1164	ENV	0.0426
	C19	220	COL	Тор	3.3412	ENV	0.0233	6.0488	ENV	0.0421
C18 ————————————————————————————————————	C16	C18 320	50X50	Bottom	3.3412	ENV	0.0233	6.0488	ENV	0.0421
	C22	C22 225	COL	Тор	1.9352	ENV	0.0135	5.6208	ENV	0.0391
	325	50X50	Bottom	1.9352	ENV	0.0135	5.6208	ENV	0.0391	

Nota: Cuantías transversales Nivel 5 obtenidos del software ETABS.

Tabla 34.Cuantía transversal de columnas con rigidez Nivel 4

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)	
	C3	280	COL	Тор	2.8368	Comb5	0.0247	4.8181	ENV	0.0335	
	CS	280	50X50	Bottom	2.8368	Comb5	0.0247	4.8181	ENV	0.0335	
C8	285	COL	Тор	2.7996	ENV	0.0244	3.511	ENV	0.0244		
		50X50	Bottom	2.7996	ENV	0.0244	3.511	ENV	0.0244		
Nivel 4	C13	C13 290	290	COL	Тор	2.2998	ENV	0.02	3.6195	ENV	0.0252
NIVEI 4	C13		50X50	Bottom	2.2998	ENV	0.02	3.6195	ENV	0.0252	
	C18	205	COL	Тор	2.7996	ENV	0.0244	3.511	ENV	0.0244	
	C16	295	50X50	Bottom	2.7996	ENV	0.0244	3.511	ENV	0.0244	
	C23	300	COL	Тор	2.8368	Comb5	0.0247	4.8181	ENV	0.0335	
	C23		50X50	Bottom	2.8368	Comb5	0.0247	4.8181	ENV	0.0335	

Nota: Cuantías transversales Nivel 4 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 35.Cuantía transversal de columnas con rigidez Nivel 3

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	C3	255	COL	Тор	3.5044	ENV	0.0305	6.2796	ENV	0.0437
	CS	233	50X50	Bottom	3.5044	ENV	0.0305	6.2796	ENV	0.0437
	C8	260	COL	Тор	3.6532	-	0	4.2227	-	0
C8	200	50X50	Bottom	3.6532	-	0	4.2227	-	0	
Nivel 3		C13 265	COL	Тор	3.1027	-	0	4.3177	-	0
Mivel 3	C13		50X50	Bottom	3.1027	-	0	4.3177	-	0
	C18	270	COL	Тор	3.6532	-	0	4.2227	-	0
_	C18	270	50X50	Bottom	3.6532	-	0	4.2227	-	0
	C23	275	COL	Тор	3.5044	ENV	0.0305	6.2796	ENV	0.0437
	C23		50X50	Bottom	3.5044	ENV	0.0305	6.2796	ENV	0.0437

Nota: Cuantías transversales Nivel 3 obtenidos del software ETABS.

Tabla 36.Cuantía transversal de columnas con rigidez Nivel 2

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	С3	230	COL	Тор	3.967	ENV	0.0345	5.6575	ENV	0.0492
	Cs	230	50X50	Bottom	3.967	ENV	0.0345	5.6575	ENV	0.0492
C8	Co	225	COL	Тор	4.1862	-	0	4.6701	-	0
	C8	235	50X50	Bottom	4.1862	-	0	4.6701	-	0
Nivel 2	C12	C13 240	COL	Тор	3.6272	-	0	4.7574	-	0
Nivei 2	C13	240	50X50	Bottom	3.6272	-	0	4.7574	-	0
	C18	8 245	COL	Тор	4.1862	-	0	4.6701	-	0
_	C16		50X50	Bottom	4.1862	-	0	4.6701	-	0
	C23	250	COL	Тор	3.967	ENV	0.0345	5.6575	ENV	0.0492
	C23		50X50	Bottom	3.967	ENV	0.0345	5.6575	ENV	0.0492

Nota: Cuantías transversales Nivel 2 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 37.

Cuantía transversal de columnas con rigidez Nivel 1

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)	
	С3	205	COL	Тор	4.1007	ENV	0.0357	6.5331	ENV	0.0455	
	C3	203	50X50	Bottom	4.1007	ENV	0.0357	6.5331	ENV	0.0455	
C8	210	COL	Тор	4.1658		0	4.343		0		
		50X50	Bottom	4.1658		0	4.343		0		
N:1 1	Nr. 11 - C12	C13 215	215	COL	Тор	3.8836		0	4.4132		0
Nivel 1	CIS		50X50	Bottom	3.8836		0	4.4132		0	
	C10	18 220	COL	Тор	4.1658		0	4.343		0	
_	C18		50X50	Bottom	4.1658		0	4.343		0	
	C23	225	COL	Тор	4.1007	ENV	0.0357	6.5331	ENV	0.0455	
	C23		50X50	Bottom	4.1007	ENV	0.0357	6.5331	ENV	0.0455	

Nota: Cuantías transversales Nivel 1 obtenidos del software ETABS.

3.7.3. Estructura sin considerar rigidez en sus losas

3.7.3.1. Periodo de la estructura sin rigidez

Tabla 38. *Periodos de Vibración y Frecuencias sin Rigidez.*

Caso	Modo	Periodos	Frecuencia	
Caso	Wiodo	seg.	cir./seg.	
Modal	1	0.769	1.3	
Modal	2	0.737	1.357	
Modal	3	0.588	1.702	
Modal	4	0.232	4.308	
Modal	5	0.225	4.454	
Modal	6	0.182	5.484	
Modal	7	0.12	8.345	
Modal	8	0.118	8.511	
Modal	9	0.098	10.189	
Modal	10	0.075	13.266	
Modal	11	0.075	13.379	
Modal	12	0.064	15.629	
Modal	13	0.056	17.7	
Modal	14	0.056	17.734	
Modal	15	0.049	20.383	

Nota: Periodos de vibración y frecuencias sin rigidez obtenidos del software ETABS.

3.7.3.2. Derivas de la estructura sin rigidez

Tabla 39. *Derivas sin Rigidez*

Niveles de piso	Dirección de sismo (U)	Drift	Deriva sin R.	Deriva Max.	Comprobación (d > dmax.)
Nivel 5	UX	0.00065	0.003900	0.02	OK
Nivel 5	UY	0.000601	0.003606	0.02	OK
Nivel 4	UX	0.001013	0.006078	0.02	OK
Nivel 4	UY	0.000955	0.005730	0.02	OK
Nivel 3	UX	0.001300	0.007800	0.02	OK
Nivel 3	UY	0.001238	0.007428	0.02	OK
Nivel 2	UX	0.001359	0.008154	0.02	OK
Nivel 2	UY	0.001311	0.007866	0.02	OK
Nivel 1	UX	0.000797	0.004782	0.02	OK
Nivel 1	UY	0.000786	0.004716	0.02	OK

Nota: Derivas sin rigidez obtenidos del software ETABS.

3.7.3.3. Reacciones sin rigidez

Tabla 40. *Reacciones sin Rigidez*

Reacciones sa Combinaciones De Cargas	Fuerzas en X (Ton)	Fuerzas en Y (Ton)	Fuerzas en Z (Ton)	Momento en X (Ton-m)	Momento en Y (Ton-m)	Momento en Z (Ton-m)
Carga Muerta	0.000	0.000	1523.337	12491.364	-14319.369	0.000
Carga Viva	0.000	0.000	308.320	2528.224	-2898.208	0.000
SX	-120.065	0.000	0.000	0.000	-1338.449	1082.985
SY	0.000	-105.057	0.000	1178.909	0.000	-1086.287
Sismo X (UX)	98.680	0.000	0.000	0.000	1055.810	809.173
Sismo Y (UY)	0.000	103.242	0.000	1104.837	0.000	970.472
Comb1	0.000	0.000	2132.672	17487.910	-20047.117	0.000
Comb2	0.000	0.000	2321.317	19034.796	-21820.376	0.000
Comb3	0.000	0.000	2136.325	17517.861	-20081.451	0.000
Comb4	0.000	0.000	2136.325	17517.861	-20081.451	0.000
Comb5	98.680	0.000	2136.325	17517.861	-19025.640	809.173
Comb5	-98.680	0.000	2136.325	17517.861	-21137.261	-809.173
Comb6	0.000	103.242	2136.325	18622.698	-20081.451	970.472
Comb6	0.000	-103.242	2136.325	16413.024	-20081.451	-970.472
Comb7	0.000	0.000	1371.003	11242.228	-12887.432	0.000
Comb8	98.680	0.000	1371.003	11242.228	-11831.622	809.173
Comb8	-98.680	0.000	1371.003	11242.228	-13943.243	-809.173
Comb9	0.000	103.242	1371.003	12347.065	-12887.432	970.472
Comb9	0.000	-103.242	1371.003	10137.391	-12887.432	-970.472

Nota: Reacciones sin rigidez obtenidos del software ETABS.

3.7.3.4. Cuantía longitudinal de viga

Tabla 41.Cuantía Longitudinal sin rigidez vigas Nivel 5

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
				End-I	-496.753	ENV	3.67	0.000	ENV	2.39
	B31	31	V25X40	Middle	0	ENV	1.22	360.396	Comb2	3.14
			End-J	-511.347	ENV	3.79	0.000	ENV	2.46	
				End-I	-635.122	ENV	4.77	0.000	ENV	3.08
	B32	32	V25X40	Middle	0	ENV	1.55	520.360	Comb2	3.86
Nimal 5				End-J	-649.945	ENV	4.88	0.000	ENV	3.14
Nivel 5				End-I	-649.945	ENV	4.88	0.000	ENV	3.14
	B33	33	V25X40	Middle	0	ENV	1.55	520.360	Comb2	3.86
				End-J	-635.122	ENV	4.77	0.000	ENV	3.08
				End-I	-511.347	ENV	3.79	0.000	ENV	2.46
	B34	34	V25X40	Middle	0	ENV	1.22	364.331	Comb2	3.14
				End-J	-496.753	ENV	3.67	0.000	ENV	2.39

Nota: Cuantías Nivel 5 sin rigidez obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 42.Cuantía Longitudinal sin rigidez vigas Nivel 4

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
				End-I	-648.669	ENV	4.87	0.000	ENV	3.14
B31	71	V25X40	Middle	0	ENV	1.55	357.347	Comb2	3.14	
			End-J	-579.001	ENV	4.32	27.228	ENV	2.8	
		72		End-I	-736.245	ENV	5.59	0.000	ENV	3.14
	B32		V25X40	Middle	0	ENV	1.76	518.047	Comb2	3.84
Nivel 4				End-J	-736.625	ENV	5.59	0.000	ENV	3.14
Mivei 4				End-I	-736.625	ENV	5.59	0.000	ENV	3.14
	B33	73	V25X40	Middle	0	ENV	1.76	518.047	Comb2	3.84
				End-J	-736.245	ENV	5.59	0.000	ENV	3.14
				End-I	-579.001	ENV	4.32	27.228	ENV	2.8
	B34	74	V25X40	Middle	0	ENV	1.55	347.781	Comb2	3.14
				End-J	-648.669	ENV	4.87	0.000	ENV	3.14

Nota: Cuantías Nivel 4 sin rigidez obtenidos del software ETABS.

Tabla 43.Cuantía Longitudinal sin rigidez vigas Nivel 3

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
				End-I	-737.191	ENV	5.59	117.028	ENV	3.14
	B31	111	V25X40	Middle	-2.243	ENV	1.76	325.099	ENV	3.14
			End-J	-697.882	ENV	5.27	122.603	ENV	3.14	
			End-I	-823.936	ENV	6.31	0.000	ENV	3.14	
	B32	112	V25X40	Middle	0	ENV	1.99	518.332	Comb2	3.84
Nivel 3				End-J	-828.568	ENV	6.35	0.000	ENV	3.14
Nivei 5				End-I	-828.568	ENV	6.35	0.000	ENV	3.14
	B33	113	V25X40	Middle	0	ENV	1.99	518.332	Comb2	3.84
				End-J	-823.936	ENV	6.31	0.000	ENV	3.14
				End-I	-697.882	ENV	5.27	122.603	ENV	3.14
	B34	114	4 V25X40	Middle	-19.548	ENV	1.76	325.525	ENV	3.14
				End-J	-737.191	ENV	5.59	117.028	ENV	3.14

Nota: Cuantías Nivel 3 sin rigidez obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 44.Cuantía Longitudinal sin rigidez vigas Nivel 2

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
				End-I	-794.701	ENV	6.07	183.798	ENV	3.14
	B31	151	V25X40	Middle	-27.356	ENV	1.9	344.225	ENV	3.14
			End-J	-767.836	ENV	5.85	179.656	ENV	3.14	
				End-I	-876.496	ENV	6.76	45.818	ENV	3.22
	B32	152	V25X40	Middle	0	ENV	2.12	518.087	Comb2	3.84
Stown				End-J	-882.338	ENV	6.81	44.499	ENV	3.24
Story2				End-I	-882.338	ENV	6.81	44.499	ENV	3.24
	B33	153	V25X40	Middle	0	ENV	2.12	518.087	Comb2	3.84
				End-J	-876.496	ENV	6.76	45.818	ENV	3.22
				End-I	-767.836	ENV	5.85	179.656	ENV	3.14
	B34	154	V25X40	Middle	-42.911	ENV	1.9	351.235	ENV	3.14
				End-J	-794.701	ENV	6.07	183.798	ENV	3.14

Nota: Cuantías Nivel 2 sin rigidez obtenidos del software ETABS.

Tabla 45.Cuantía Longitudinal sin rigidez vigas Nivel 1

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
				End-I	-729.886	ENV	5.53	156.932	ENV	3.14
B31 19	191	V25X40	Middle	-15.154	ENV	1.78	327.749	ENV	3.14	
			End-J	-745.542	ENV	5.66	125.927	ENV	3.14	
			End-I	-833.339	ENV	6.39	6.225	ENV	3.14	
	B32	192	V25X40	Middle	0	ENV	2.02	518.201	Comb2	3.84
Nivol 1				End-J	-843.561	ENV	6.48	2.598	ENV	3.14
Nivel 1				End-I	-843.561	ENV	6.48	2.598	ENV	3.14
	B33	193	V25X40	Middle	0	ENV	2.02	518.201	Comb2	3.84
				End-J	-833.339	ENV	6.39	6.225	ENV	3.14
				End-I	-745.542	ENV	5.66	125.927	ENV	3.14
	B34	194	V25X40	Middle	-21.385	ENV	1.78	346.012	ENV	3.14
				End-J	-729.886	ENV	5.53	156.932	ENV	3.14

Nota: Cuantías Nivel 1 sin rigidez obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

3.7.3.5. Cuantía longitud columna

Tabla 46.Cuantía Longitudinal en columna sin rigidez Nivel 5

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	C3	305	COL	Тор	5.659	541.962	-747.797	ENV	1 %
		303	50X50	Bottom	7.0376	-426.989	711.2	ENV	1 %
	C8	310	COL	Тор	11.7936	-1167.989	269.36	ENV	1 %
		310	50X50	Bottom	13.1992	-671.261	-130.958	ENV	1 %
Nivel 5	C13	315	COL	Тор	12.6836	-1292.798	268.54	ENV	1 %
Mivel 5	C13	313	50X50	Bottom	14.0892	698.408	-130.142	ENV	1 %
	C18	320	COL	Тор	11.7936	1167.989	-269.36	ENV	1 %
	C18	320	50X50	Bottom	13.1992	671.261	130.958	ENV	1 %
		325	5 COL	Тор	5.659	-541.962	-747.797	ENV	1 %
C23	325		50X50	Bottom	7.0376	426.989	-711.2	ENV	1 %

Nota: Cuantías Nivel 5 sin rigidez obtenidos del software ETABS.

Tabla 47.Cuantía Longitudinal en columna sin rigidez Nivel 4

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	C3	280	COL	Тор	12.5125	423.643	-711.2	ENV	1 %
		280	50X50	Bottom	13.8911	-383.021	-891.785	ENV	1 %
	C8	285	COL	Тор	44.3686	671.261	388.332	ENV	1 %
			50X50	Bottom	46.2428	750.794	-295.347	ENV	1 %
Nivel 4	C13	290	COL	Тор	47.1822	-698.408	387.67	ENV	1 %
Nivei 4	C13	290	50X50	Bottom	49.0563	-753.573	-294.164	ENV	1 %
	C18	295	COL	Тор	44.3686	671.261	388.332	ENV	1 %
	C16	293	50X50	Bottom	46.2428	750.794	-295.347	ENV	1 %
C23	C23	300	200 COL	Тор	12.5125	-423.643	-711.2	ENV	1 %
	C23		300	50X50	Bottom	13.8911	383.021	891.785	ENV

Nota: Cuantías Nivel 4 sin rigidez obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 48.Cuantía Longitudinal en columna sin rigidez Nivel 3

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	СЗ	255	COL	Тор	18.7021	471.065	-891.785	ENV	1 %
		233	50X50	Bottom	20.0807	-486.705	959.99	ENV	1 %
	C8	260	COL	Тор	67.5126	-750.794	-450.423	ENV	1 %
			50X50	Bottom	69.3868	782.33	466.513	ENV	1 %
Nivel 3	C13	265	COL	Тор	71.7335	-753.573	449.324	ENV	1 %
Nivei 3	C13	265	50X50	Bottom	73.6076	794.104	-464.917	ENV	1 %
	C10	270	COL	Тор	67.5126	750.794	450.423	ENV	1 %
	C18	270	50X50	Bottom	69.3868	782.33	-466.513	ENV	1 %
	C22	275	COL	Тор	18.7021	-471.065	-891.785	ENV	1 %
	C23	213	50X50	Bottom	20.0807	486.705	959.99	ENV	1 %

Nota: Cuantías Nivel 3 sin rigidez obtenidos del software ETABS.

Tabla 49.Cuantía Longitudinal en columna sin rigidez Nivel 2

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	C3	230	COL	Тор	52.4523	394.17	959.99	ENV	1 %
		230	50X50	Bottom	54.2905	-700.376	1002.073	ENV	1 %
	C8	235	COL	Тор	90.6445	782.33	-414.505	ENV	1 %
			50X50	Bottom	92.5187	756.436	-658.05	ENV	1 %
Nivel 2	C13	240	COL	Тор	96.2373	-794.104	-413.22	ENV	1 %
NIVEI 2	C13	240	50X50	Bottom	98.1115	762.569	656.151	ENV	1 %
	C18	245	COL	Тор	90.6445	-782.33	414.505	ENV	1 %
	C18	243	50X50	Bottom	92.5187	756.436	-658.05	ENV	1 %
C23	C23	250	COL	Тор	52.4523	-394.17	-959.99	ENV	1 %
	C23	3 250	250	50X50	Bottom	54.2905	700.376	1002.073	ENV

Nota: Cuantías Nivel 2 sin rigidez obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 50.Cuantía Longitudinal en columna sin rigidez Nivel 1

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	C2	205	COL	Top	66.1037	285.263	-922.245	ENV	1 %
	C3	205	50X50	Bottom	67.9419	-1038.989	1112.687	ENV	1 %
	C8	210	COL	Top	113.6978	756.436	-112.661	ENV	1 %
	C8	210	50X50	Bottom	115.572	-1002.167	1002.508	ENV	1 %
Nivel 1	C13	215	COL	Top	120.5573	47.608	-568.593	ENV	1 %
Nivei 1	CIS	213	50X50	Bottom	122.4314	964.717	-1001.864	ENV	1 %
	C10	220	COL	Top	113.6978	-756.436	-112.661	ENV	1 %
	C18	220	50X50	Bottom	115.572	1002.167	1002.508	ENV	1 %
	C22	225	COL	Top	66.1037	-285.263	-922.245	ENV	1 %
	C23	225	50X50	Bottom	67.9419	1038.989	1112.687	ENV	1 %

Nota: Cuantías Nivel 1 sin rigidez obtenidos del software ETABS.

3.7.3.6. Cuantía transversal viga

Tabla 51.Cuantía Transversal sin rigidez vigas Nivel 5

Piso	Cód.	Núm. Viga	Sección	Ubicaci ón	V (Ton)	V Comb o	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsio n (cm²)
				End-I	8.5376	ENV	0.0265	1.892	ENV	0	1.892	ENV	0
	B31	31	V25X40	Middle	6.1504	ENV	0.0209	1.892	ENV	0	1.892	ENV	0
				End-J	9.47	ENV	0.0344	1.892	ENV	0	1.892	ENV	0
				End-I	9.7198	ENV	0.0365	0.014	ENV	0	0.014	ENV	0
	B32	32	V25X40	Middle	6.9774	ENV	0.0209	0.014	ENV	0	0.014	ENV	0
Nivel 5				End-J	10.8533	ENV	0.0461	0.014	ENV	0	0.014	ENV	0
3				End-I	9.7353	ENV	0.0367	0.014	ENV	0	0.014	ENV	0
	B33	33	V25X40	Middle	6.9619	ENV	0.0209	0.014	ENV	0	0.014	ENV	0
				End-J	10.8378	ENV	0.046	0.014	ENV	0	0.014	ENV	0
				End-I	8.5637	ENV	0.0268	1.892	ENV	0	1.892	ENV	0
	B34	34	V25X40	Middle	6.1243	ENV	0.0209	1.892	ENV	0	1.892	ENV	0
				End-J	9.4439	ENV	0.0342	1.892	ENV	0	1.892	ENV	0

Nota: Cuantías Nivel 5 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 52.Cuantía Transversal sin rigidez vigas Nivel 4

Piso	Cód.	Núm. Viga	Sección	Ubicaci ón	V (Ton)	V Comb o	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsio n (cm²)
				End-I	7.0124	Comb9	0.0594	2.369	ENV	0	2.369	ENV	0
	B31	71	V25X40	Middle	5.1417	Comb9	0.0435	2.369	ENV	0	2.369	ENV	0
				End-J	7.0124	Comb9	0.0594	2.369	ENV	0	2.369	ENV	0
				End-I	10.0066	ENV	0.039	0.008	ENV	0	0.008	ENV	0
	B32	72	V25X40	Middle	7.2548	ENV	0.0209	0.008	ENV	0	0.008	ENV	0
Nivel				End-J	11.1308	ENV	0.0485	0.008	ENV	0	0.008	ENV	0
4				End-I	10.0064	ENV	0.039	0.008	ENV	0	0.008	ENV	0
	B33	73	V25X40	Middle	7.2549	ENV	0.0209	0.008	ENV	0	0.008	ENV	0
				End-J	11.1309	ENV	0.0485	0.008	ENV	0	0.008	ENV	0
				End-I	7.0124	Comb9	0.0594	2.369	ENV	0	2.369	ENV	0
	B34	74	V25X40	Middle	5.1417	Comb9	0.0435	2.369	ENV	0	2.369	ENV	0
				End-J	7.0124	Comb9	0.0594	2.369	ENV	0	2.369	ENV	0

Nota: Cuantías Nivel 4 obtenidos del software ETABS.

Tabla 53.Cuantía Transversal sin rigidez vigas Nivel 3

Piso	Cód.	Núm. Viga	Sección	Ubicaci ón	V (Ton)	V Comb o	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsio n (cm²)
				End-I	7.9171	ENV	0.067	3.608	ENV	0	3.608	ENV	0
	B31	111	V25X40	Middle	6.0464	ENV	0.0512	3.608	ENV	0	3.608	ENV	0
				End-J	7.4723	Comb9	0.0633	3.608	ENV	0	3.608	ENV	0
				End-I	10.2763	ENV	0.0413	0.016	ENV	0	0.016	ENV	0
	B32	112	V25X40	Middle	1.9797	ENV	0.0209	0.016	ENV	0	0.016	ENV	0
Nivel				End-J	11.4036	ENV	0.0508	0.016	ENV	0	0.016	ENV	0
3				End-I	10.2801	ENV	0.0413	0.016	ENV	0	0.016	ENV	0
	B33	113	V25X40	Middle	1.995	ENV	0.0211	0.016	ENV	0	0.016	ENV	0
				End-J	11.3998	ENV	0.0508	0.016	ENV	0	0.016	ENV	0
				End-I	7.9563	ENV	0.0674	3.608	ENV	0	3.608	ENV	0
	B34	114	V25X40	Middle	6.0856	ENV	0.0515	3.608	ENV	0	3.608	ENV	0
				End-J	7.4723	Comb9	0.0633	3.608	ENV	0	3.608	ENV	0

Nota: Cuantías Nivel 3 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 54.Cuantía Transversal sin rigidez vigas Nivel 2

Piso	Cód.	Núm. Viga	Sección	Ubicaci ón	V (Ton)	V Comb o	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsio n (cm²)
				End-I	8.1237	ENV	0.0688	4.329	ENV	0	4.329	ENV	0
	B31	151	V25X40	Middle	6.253	ENV	0.0529	4.329	ENV	0	4.329	ENV	0
				End-J	7.6683	Comb9	0.0649	4.329	ENV	0	4.329	ENV	0
				End-I	7.9413	Comb9	0.0672	0.019	ENV	0	0.019	ENV	0
	B32	152	V25X40	Middle	5.7573	Comb9	0.0487	0.019	ENV	0	0.019	ENV	0
Nivel				End-J	7.9413	Comb9	0.0672	0.019	ENV	0	0.019	ENV	0
2				End-I	7.9413	Comb9	0.0672	0.019	ENV	0	0.019	ENV	0
	B33	153	V25X40	Middle	5.7573	Comb9	0.0487	0.019	ENV	0	0.019	ENV	0
				End-J	7.9413	Comb9	0.0672	0.019	ENV	0	0.019	ENV	0
				End-I	8.1446	ENV	0.0689	4.329	ENV	0	4.329	ENV	0
	B34	154	V25X40	Middle	6.2739	ENV	0.0531	4.329	ENV	0	4.329	ENV	0
				End-J	7.6683	Comb9	0.0649	4.329	ENV	0	4.329	ENV	0

Nota: Cuantías Nivel 2 obtenidos del software ETABS.

Tabla 55.Cuantía Transversal sin rigidez vigas Nivel 1

Piso	Cód.	Núm. Viga	Sección	Ubicaci ón	V (Ton)	V Comb o	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsio n (cm²)
				End-I	7.9813	ENV	0.0676	4.309	ENV	0	4.309	ENV	0
	B31	191	V25X40	Middle	6.1107	ENV	0.0517	4.309	ENV	0	4.309	ENV	0
				End-J	7.5008	Comb9	0.0635	4.309	ENV	0	4.309	ENV	0
				End-I	10.3174	ENV	0.0416	0.022	ENV	0	0.022	ENV	0
	B32	192	V25X40	Middle	2.0218	ENV	0.0214	0.022	ENV	0	0.022	ENV	0
Nivel				End-J	11.4506	ENV	0.0512	0.022	ENV	0	0.022	ENV	0
1				End-I	10.3267	ENV	0.0417	0.022	ENV	0	0.022	ENV	0
	B33	193	V25X40	Middle	2.0599	ENV	0.0218	0.022	ENV	0	0.022	ENV	0
				End-J	11.4413	ENV	0.0511	0.022	ENV	0	0.022	ENV	0
				End-I	7.9469	ENV	0.0673	4.309	ENV	0	4.309	ENV	0
	B34	194	V25X40	Middle	6.0762	ENV	0.0514	4.309	ENV	0	4.309	ENV	0
				End-J	7.5008	Comb9	0.0635	4.309	ENV	0	4.309	ENV	0

Nota: Cuantías Nivel 1 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

3.7.3.7. Cuantía transversal columna

Tabla 56.Cuantía transversal de columnas sin rigidez Nivel 5

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	С3	305	COL	Тор	1.9352	ENV	0.0135	5.6208	ENV	0.0391
		303	50X50	Bottom	1.9352	ENV	0.0135	5.6208	ENV	0.0391
	C8	310	COL	Тор	3.3412	ENV	0.0233	6.0488	ENV	0.0421
	Co	310	50X50	Bottom	3.3412	ENV	0.0233	6.0488	ENV	0.0421
Nivel 5	C13	315	COL	Тор	3.6851	ENV	0.0257	6.1164	ENV	0.0426
Nivei 5	CIS	313	50X50	Bottom	3.6851	ENV	0.0257	6.1164	ENV	0.0426
	C18	320	COL	Тор	3.3412	ENV	0.0233	6.0488	ENV	0.0421
	C18	320	50X50	Bottom	3.3412	ENV	0.0233	6.0488	ENV	0.0421
	C23	325	COL	Тор	1.9352	ENV	0.0135	5.6208	ENV	0.0391
	C23	323	50X50	Bottom	1.9352	ENV	0.0135	5.6208	ENV	0.0391

Nota: Cuantías transversales Nivel 5 obtenidos del software ETABS.

Tabla 57.Cuantía transversal de columnas sin rigidez Nivel 4

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	C3	280	COL	Тор	2.8368	Comb5	0.0247	4.8181	ENV	0.0335
		280	50X50	Bottom	2.8368	Comb5	0.0247	4.8181	ENV	0.0335
	C8	285	COL	Тор	2.7996	ENV	0.0244	3.511	ENV	0.0244
		263	50X50	Bottom	2.7996	ENV	0.0244	3.511	ENV	0.0244
Nivel 4	C13	290	COL	Top	2.2998	ENV	0.02	3.6195	ENV	0.0252
MIVEL 4	C13	290	50X50	Bottom	2.2998	ENV	0.02	3.6195	ENV	0.0252
	C18	295	COL	Top	2.7996	ENV	0.0244	3.511	ENV	0.0244
	C16	293	50X50	Bottom	2.7996	ENV	0.0244	3.511	ENV	0.0244
	C23	300	COL	Top	2.8368	Comb5	0.0247	4.8181	ENV	0.0335
	C23	300	50X50	Bottom	2.8368	Comb5	0.0247	4.8181	ENV	0.0335

Nota: Cuantías transversales Nivel 4 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 58.Cuantía transversal de columnas sin rigidez Nivel 3

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	C3	255	COL	Тор	3.5044	ENV	0.0305	6.2796	ENV	0.0437
	C3	233	50X50	Bottom	3.5044	ENV	0.0305	6.2796	ENV	0.0437
	C8	260	COL	Тор	3.6532	-	0	4.2227	-	0
	Co	200	50X50	Bottom	3.6532	-	0	4.2227	-	0
C42	C13	265	COL	Тор	3.1027	-	0	4.3177	-	0
Story3	C13	203	50X50	Bottom	3.1027	-	0	4.3177	-	0
	C18	270	COL	Тор	3.6532	-	0	4.2227	-	0
	C18	270	50X50	Bottom	3.6532	-	0	4.2227	-	0
	C22	275	COL	Тор	3.5044	ENV	0.0305	6.2796	ENV	0.0437
	C23	275	50X50	Bottom	3.5044	ENV	0.0305	6.2796	ENV	0.0437

Nota: Cuantías transversales Nivel 3 obtenidos del software ETABS.

Tabla 59.Cuantía transversal de columnas sin rigidez Nivel 2

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	С3	230	COL	Тор	3.967	ENV	0.0345	5.6575	ENV	0.0492
	CS	230	50X50	Bottom	3.967	ENV	0.0345	5.6575	ENV	0.0492
	C8	235	COL	Тор	4.1862	-	0	4.6701	-	0
	Co	233	50X50	Bottom	4.1862	-	0	4.6701	-	0
Nivel 2	C13	240	COL	Тор	3.6272	-	0	4.7574	-	0
Nivei 2	C13	240	50X50	Bottom	3.6272	-	0	4.7574	-	0
	C18	245	COL	Тор	4.1862	-	0	4.6701	-	0
	C16	243	50X50	Bottom	4.1862	-	0	4.6701	-	0
	C23	250	COL	Тор	3.967	ENV	0.0345	5.6575	ENV	0.0492
	C23	250	50X50	Bottom	3.967	ENV	0.0345	5.6575	ENV	0.0492

Nota: Cuantías transversales Nivel 2 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 60.Cuantía transversal de columnas sin rigidez Nivel 1

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	C2	205	COL	Тор	4.1007	ENV	0.0357	6.5331	ENV	0.0455
	C3	205	50X50	Bottom	4.1007	ENV	0.0357	6.5331	ENV	0.0455
		210	COL	Тор	4.1658	-	0	4.343	-	0
	C8	210	50X50	Bottom	4.1658	-	0	4.343	-	0
NP 14	C12	215	COL	Тор	3.8836	-	0	4.4132	-	0
Nivel 1	C13	215	50X50	Bottom	3.8836	-	0	4.4132	-	0
	C10	220	COL	Тор	4.1658	-	0	4.343	-	0
	C18	220	50X50	Bottom	4.1658	-	0	4.343	-	0
	C22	225	COL	Тор	4.1007	ENV	0.0357	6.5331	ENV	0.0455
	C23	225	50X50	Bottom	4.1007	ENV	0.0357	6.5331	ENV	0.0455

Nota: Cuantías transversales Nivel 1 obtenidos del software ETABS.

3.7.4. Estructura corregida en su masa sin considerar su rigidez en sus losas

3.7.4.1. Periodo de la estructura corregida

Tabla 61.Periodos de Vibración y Frecuencias del modelo corregido

Caso	Modo	Periodos	Frecuencia
Caso	Wiodo	seg.	cir./seg.
Modal	1	0.644	1.552
Modal	2	0.606	1.619
Modal	3	0.506	2.031
Modal	4	0.195	5.141
Modal	5	0.188	5.314
Modal	6	0.157	6.544
Modal	7	0.101	9.958
Modal	8	0.098	10.155
Modal	9	0.086	12.158
Modal	10	0.0648	15.83
Modal	11	0.0638	15.965
Modal	12	0.0559	18.65
Modal	13	0.05	21.121
Modal	14	0.0489	21.161
Modal	15	0.0429	24.322

Nota: Periodos de vibración y frecuencias obtenidos del software ETABS.

3.7.4.2. Deriva de la estructura corregida

Tabla 62.Derivas del modelo corregido

Niveles de piso	Dirección de sismo (U)	Drift	Deriva.	Deriva Max.	Comprobación (d > dmax.)
Nivel 5	UX	0.000458	0.002750	0.02	OK
Nivel 5	UY	0.000505	0.003030	0.02	OK
Nivel 4	UX	0.000758	0.004550	0.02	OK
Nivel 4	UY	0.000817	0.004902	0.02	OK
Nivel 3	UX	0.000991	0.005946	0.02	OK
Nivel 3	UY	0.001068	0.006408	0.02	OK
Nivel 2	UX	0.001061	0.006366	0.02	OK
Nivel 2	UY	0.001125	0.006750	0.02	OK
Nivel 1	UX	0.000667	0.004002	0.02	OK
Nivel 1	UY	0.000686	0.004116	0.02	OK

Nota: Derivas obtenidos del software ETABS.

3.7.4.3. Reacciones de la estructura corregida

Tabla 63. *Reacciones sin Rigidez*

Reacciones si Combinaciones De Cargas	Fuerzas en X (Ton)	Fuerzas en Y (Ton)	Fuerzas en Z (Ton)	Momento en X (Ton-m)	Momento en Y (Ton-m)	Momento en Z (Ton-m)
Carga Muerta	0.000	0.000	1523.337	12491.364	-14319.369	0.000
Carga Viva	0.000	0.000	308.320	2528.224	-2898.208	0.000
SX	-83.109	0.000	0.000	0.000	-926.474	749.642
SY	0.000	-72.720	0.000	816.041	0.000	-751.928
Sismo X (UX)	81.675	0.000	0.000	0.000	880.005	669.733
Sismo Y (UY)	0.000	85.246	0.000	917.816	0.000	801.307
Comb1	0.000	0.000	2132.672	17487.910	-20047.117	0.000
Comb2	0.000	0.000	2321.317	19034.796	-21820.376	0.000
Comb3	0.000	0.000	2136.325	17517.861	-20081.451	0.000
Comb4	0.000	0.000	2136.325	17517.861	-20081.451	0.000
Comb5	81.675	0.000	2136.325	17517.861	-19201.445	669.733
Comb5	-81.675	0.000	2136.325	17517.861	-20961.456	-669.733
Comb6	0.000	85.246	2136.325	18435.678	-20081.451	801.307
Comb6	0.000	-85.246	2136.325	16600.045	-20081.451	-801.307
Comb7	0.000	0.000	1371.003	11242.228	-12887.432	0.000
Comb8	81.675	0.000	1371.003	11242.228	-12007.427	669.733
Comb8	-81.675	0.000	1371.003	11242.228	-13767.437	-669.733
Comb9	0.000	85.246	1371.003	12160.044	-12887.432	801.307
Comb9	0.000	-85.246	1371.003	10324.412	-12887.432	-801.307

Nota: Reacciones sin rigidez obtenidos del software ETABS.

3.7.4.4. Cuantía longitudinal de vigas

Tabla 64.Cuantía Longitudinal en vigas de la estructura corregida Nivel 5

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
				End-I	-470.759	ENV	3.47	0	ENV	2.26
	B31	31	V25X40	Middle	0	ENV	1.16	360.396	Comb2	3.14
				End-J	-487.013	ENV	3.6	0	ENV	2.34
	B32		V25X40	End-I	-612.67	ENV	4.59	0	ENV	2.96
		32		Middle	0	ENV	1.5	520.36	Comb2	3.86
Nivol 5				End-J	-627.346	ENV	4.7	0	ENV	3.04
Nivel 5				End-I	-627.346	ENV	4.7	0	ENV	3.04
	B33	33	V25X40	Middle	0	ENV	1.5	520.36	Comb2	3.86
				End-J	-612.67	ENV	4.59	0	ENV	2.96
				End-I	-487.013	ENV	3.6	0	ENV	2.34
	B34	34	V25X40	Middle	0	ENV	1.16	364.331	Comb2	3.14
				End-J	-470.759	ENV	3.47	0	ENV	2.26

Nota: Cuantías Nivel 5 corregida obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 65.Cuantía Longitudinal en vigas de la estructura corregida Nivel 4

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
				End-I	-607.55	ENV	4.55	0	ENV	2.94
	B31	71	V25X40	Middle	0	ENV	1.45	357.347	Comb2	3.14
				End-J	-538.936	ENV	4	0	ENV	2.6
•				End-I	-699.281	ENV	5.28	0	ENV	3.14
	B32	72	V25X40	Middle	0	ENV	1.67	518.047	Comb2	3.84
Nivel 4				End-J	-699.574	ENV	5.29	0	ENV	3.14
Nivei 4			V25X40	End-I	-699.574	ENV	5.29	0	ENV	3.14
	B33	73		Middle	0	ENV	1.67	518.047	Comb2	3.84
				End-J	-699.281	ENV	5.28	0	ENV	3.14
				End-I	-538.936	ENV	4	0	ENV	2.6
	B34	74	V25X40	Middle	0	ENV	1.45	347.781	Comb2	3.14
				End-J	-607.55	ENV	4.55	0	ENV	2.94

Nota: Cuantías Nivel 4 corregida obtenidos del software ETABS.

Tabla 66.Cuantía Longitudinal en vigas de la estructura corregida Nivel 3

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
				End-I	-679.958	ENV	5.13	59.794	ENV	3.14
	B31	111	V25X40	Middle	0	ENV	1.62	357.11	Comb2	3.14
				End-J	-642.444	ENV	4.82	67.165	ENV	3.11
				End-I	-773.753	ENV	5.89	0	ENV	3.14
	B32	112	V25X40	Middle	0	ENV	1.86	518.332	Comb2	3.84
Nivel 3				End-J	-778.191	ENV	5.93	0	ENV	3.14
Nivei 5			V25X40	End-I	-778.191	ENV	5.93	0	ENV	3.14
	B33	113		Middle	0	ENV	1.86	518.332	Comb2	3.84
				End-J	-773.753	ENV	5.89	0	ENV	3.14
				End-I	-642.444	ENV	4.82	67.165	ENV	3.11
	B34	114	V25X40	Middle	0	ENV	1.62	352.941	Comb2	3.14
				End-J	-679.958	ENV	5.13	59.794	ENV	3.14

Nota: Cuantías Nivel 3 corregida obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 67.Cuantía Longitudinal en vigas de la estructura corregida Nivel 2

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)
				End-I	-727.845	ENV	5.52	116.942	ENV	3.14
	B31	151	V25X40	Middle	-3.587	ENV	1.74	326.494	ENV	3.14
-				End-J	-702.977	ENV	5.31	114.797	ENV	3.14
				End-I	-818.314	ENV	6.27	0	ENV	3.14
	B32	152	V25X40	Middle	0	ENV	1.97	518.087	Comb2	3.84
Nivel 2				End-J	-823.929	ENV	6.31	0	ENV	3.14
Nivei 2			V25X40	End-I	-823.929	ENV	6.31	0	ENV	3.14
	B33	153		Middle	0	ENV	1.97	518.087	Comb2	3.84
				End-J	-818.314	ENV	6.27	0	ENV	3.14
				End-I	-702.977	ENV	5.31	114.797	ENV	3.14
	B34	154	V25X40	Middle	-17.146	ENV	1.74	325.47	ENV	3.14
				End-J	-727.845	ENV	5.52	116.942	ENV	3.14

Nota: Cuantías Nivel 2 corregida obtenidos del software ETABS.

Tabla 68.Cuantía Longitudinal en vigas de la estructura corregida Nivel 1

Piso	Cód.	Núm. Viga	Sección	Ubicación	(-) Moment (Ton-cm)	(-) Combo	As Top (cm²)	(+) Moment (Ton-cm)	(+) Combo	As Bot (cm²)		
				End-I	-668.987	ENV	5.04	96.032	ENV	3.14		
	B31	191	V25X40	Middle	0	ENV	1.64	353.5	Comb2	3.14		
				End-J	-686.759	ENV	5.18	67.144	ENV	3.14		
				End-I	-781.185	ENV	5.96	0	ENV	3.14		
	B32	192	V25X40	Middle	0	ENV	1.89	518.201	Comb2	3.84		
Nivel 1				End-J	-791.137	ENV	6.04	0	ENV	3.14		
Nivei 1			V25X40	End-I	-791.137	ENV	6.04	0	ENV	3.14		
	B33	193		V25X40	V25X40	V25X40	Middle	0	ENV	1.89	518.201	Comb2
				End-J	-781.185	ENV	5.96	0	ENV	3.14		
				End-I	-686.759	ENV	5.18	67.144	ENV	3.14		
	B34	194	V25X40	Middle	0	ENV	1.64	333.829	ENV	3.14		
				End-J	-668.987	ENV	5.04	96.032	ENV	3.14		

Nota: Cuantías Nivel 1 corregida obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

3.7.4.5. Cuantía longitudinal de columnas

Tabla 69.Cuantía Longitudinal en columna de la estructura corregida Nivel 5

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	C3	305	COL	Тор	5.7864	516.727	-658.866	ENV	1 %
	CS	C3 305	50X50	Bottom	7.165	-410.321	596.452	ENV	1 %
	C8	310	COL	Тор	11.8225	-1121.886	222.222	ENV	1 %
		310	50X50	Bottom	13.2281	-633.342	-102.092	ENV	1 %
Nivel 5	C13	3 315	COL	Тор	12.6836	-1249.77	221.551	ENV	1 %
Mivel 5		313	50X50	Bottom	14.0892	676.177	-101.409	ENV	1 %
	C18	320	COL	Тор	11.8225	-1121.886	222.222	ENV	1 %
	C16	320	50X50	Bottom	13.2281	633.342	-102.092	ENV	1 %
	C23	325	COL	Тор	5.7864	-516.727	658.866	ENV	1 %
	C23	325	325 50X50	Bottom	7.165	410.321	596.452	ENV	1 %

Nota: Cuantías Nivel 5 corregida obtenidos del software ETABS.

Tabla 70.Cuantía Longitudinal en columna de la estructura corregida Nivel 4

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	C3 280	200	COL	Тор	12.8466	380.356	-596.452	ENV	1 %
		280	50X50	Bottom	14.2252	-354.896	-812.809	ENV	1 %
		205	COL	Тор	44.3686	-633.342	324.148	ENV	1 %
	C8	285	50X50	Bottom	46.2428	718.644	-241.407	ENV	1 %
Nivel 4	C13	290	COL	Тор	47.1822	-676.177	323.597	ENV	1 %
Nivei 4	C13	290	50X50	Bottom	49.0563	723.347	-240.412	ENV	1 %
	C18	295	COL	Тор	44.3686	-633.342	324.148	ENV	1 %
	C16	293	50X50	Bottom	46.2428	718.644	-241.407	ENV	1 %
(C23	300	COL 50X50	Тор	12.8466	-380.356	-596.452	ENV	1 %
	C23	300		Bottom	14.2252	354.896	-812.809	ENV	1 %

Nota: Cuantías Nivel 4 corregida obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 71.Cuantía Longitudinal en columna de la estructura corregida Nivel 3

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	C3	255	COL	Тор	37.6893	430.25	812.809	ENV	1 %
		233	50X50	Bottom	20.6958	-448.823	-893.198	ENV	1 %
	C8	260	COL	Тор	67.5126	-718.644	376.672	ENV	1 %
			50X50	Bottom	69.3868	747.421	-388.677	ENV	1 %
Nivel 3	C13	13 265	COL	Тор	71.7335	-723.347	375.75	ENV	1 %
Nivel 3	C13		50X50	Bottom	73.6076	-750.79	-387.336	ENV	1 %
	C18	270	COL	Тор	67.5126	-718.644	376.672	ENV	1 %
	CIO	270	50X50	Bottom	69.3868	747.421	-388.677	ENV	1 %
	C23	275	COL	Тор	37.6893	-430.25	-812.809	ENV	1 %
	C23	213	50X50	Bottom	20.6958	448.823	-893.198	ENV	1 %

Nota: Cuantías Nivel 3 corregida obtenidos del software ETABS.

Tabla 72.Cuantía Longitudinal en columna de la estructura corregida Nivel 2

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	С3	230	COL	Тор	51.5151	358.485	893.198	ENV	1 %
	CS	230	50X50	Bottom	53.3532	-637.499	843.422	ENV	1 %
	C8	235	COL	Тор	90.6445	-747.421	-345.007	ENV	1 %
	Co	233	50X50	Bottom	92.5187	725.143	-550.625	ENV	1 %
Nivel 2	C13	240	COL	Тор	96.2373	-750.79	343.928	ENV	1 %
Nivei 2	C13	240	50X50	Bottom	98.1115	731.114	-549.035	ENV	1 %
	C18	245	COL	Тор	90.6445	-747.421	-345.007	ENV	1 %
	C16	243	50X50	Bottom	92.5187	725.143	-550.625	ENV	1 %
	C23	250	COL	Тор	51.5151	-358.485	-893.198	ENV	1 %
	C23	230	50X50	Bottom	53.3532	637.499	843.422	ENV	1 %

Nota: Cuantías Nivel 2 corregida obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 73.Cuantía Longitudinal en columna de la estructura corregida Nivel 1

Piso	Cód.	Núm. Col.	Section	Ubicación	P (Ton)	M Major (Ton-cm)	M Minor (Ton-cm)	PMM Combo	PMM Ratio or Rebar %
	С3	205	COL	Top	64.8772	266.675	-843.422	ENV	1 %
		203	50X50	Bottom	66.7153	-885.77	928.106	ENV	1 %
	C8	210	COL	Top	113.6978	725.143	-91.041	ENV	1 %
		210	50X50	Bottom	115.572	-881.305	836.051	ENV	1 %
Nivel 1	C13	215	COL	Top	120.5573	-33.874	-485.136	ENV	1 %
NIVEI I	C13	215	50X50	Bottom	122.4314	806.358	-835.514	ENV	1 %
	C19	220	COL	Top	113.6978	-725.143	91.041	ENV	1 %
	C18	220	50X50	Bottom	115.572	881.305	836.051	ENV	1 %
	C23	225	COL	Top	64.8772	-266.675	-843.422	ENV	1 %
	C23	223	50X50	Bottom	66.7153	885.77	928.106	ENV	1 %

Nota: Cuantías Nivel 1 corregida obtenidos del software ETABS.

3.7.4.6. Cuantía transversal de vigas

Tabla 74.Cuantía Transversal de la estructura corregida vigas Nivel 5

Piso	Cód.	Núm. Viga	Sección	Ubicaci ón	V (Ton)	V Comb o	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsio n (cm²)
				End-I	8.3933	ENV	0.0253	1.552	ENV	0	1.552	ENV	0
	B31	31	V25X40	Middle	6.0062	ENV	0.0209	1.552	ENV	0	1.552	ENV	0
				End-J	9.3257	ENV	0.0332	1.552	ENV	0	1.552	ENV	0
				End-I	9.6081	ENV	0.0356	0.011	ENV	0	0.011	ENV	0
	B32	32	V25X40	Middle	6.8657	ENV	0.0209	0.011	ENV	0	0.011	ENV	0
Nivel				End-J	10.7416	ENV	0.0452	0.011	ENV	0	0.011	ENV	0
5				End-I	9.6236	ENV	0.0357	0.011	ENV	0	0.011	ENV	0
	B33	B33 33	V25X40	Middle	6.8502	ENV	0.0209	0.011	ENV	0	0.011	ENV	0
				End-J	10.7261	ENV	0.0451	0.011	ENV	0	0.011	ENV	0
В				End-I	8.4194	ENV	0.0255	1.552	ENV	0	1.552	ENV	0
	B34	34	V25X40	Middle	5.98	ENV	0.0209	1.552	ENV	0	1.552	ENV	0
				End-J	9.2996	ENV	0.033	1.552	ENV	0	1.552	ENV	0

Nota: Cuantías Nivel 5 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 75.Cuantía Transversal de la estructura corregida vigas Nivel 4

Piso	Cód.	Núm. Viga	Sección	Ubicaci ón	V (Ton)	V Comb o	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsio n (cm²)
				End-I	9.0072	ENV	0.0305	1.963	ENV	0	1.963	ENV	0
	B31	71	V25X40	Middle	6.5398	ENV	0.0209	1.963	ENV	0	1.963	ENV	0
				End-J	9.8594	ENV	0.0377	1.963	ENV	0	1.963	ENV	0
				End-I	9.8968	ENV	0.038	0.007	ENV	0	0.007	ENV	0
	B32	72	V25X40	Middle	7.1449	ENV	0.0209	0.007	ENV	0	0.007	ENV	0
Nivel				End-J	11.0209	ENV	0.0476	0.007	ENV	0	0.007	ENV	0
4				End-I	9.8966	ENV	0.038	0.007	ENV	0	0.007	ENV	0
	B33	73	V25X40	Middle	7.1451	ENV	0.0209	0.007	ENV	0	0.007	ENV	0
				End-J	11.0211	ENV	0.0476	0.007	ENV	0	0.007	ENV	0
				End-I	8.923	ENV	0.0298	1.963	ENV	0	1.963	ENV	0
	B34	74	V25X40	Middle	6.6239	ENV	0.0209	1.963	ENV	0	1.963	ENV	0
				End-J	9.9435	ENV	0.0384	1.963	ENV	0	1.963	ENV	0

Nota: Cuantías Nivel 4 obtenidos del software ETABS.

Tabla 76.Cuantía Transversal de la estructura corregida vigas Nivel 3

Piso	Cód.	Núm. Viga	Sección	Ubicaci ón	V (Ton)	V Comb o	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsio n (cm²)
				End-I	7.7093	ENV	0.0653	3.014	ENV	0	3.014	ENV	0
	B31	111	V25X40	Middle	5.8387	ENV	0.0494	3.014	ENV	0	3.014	ENV	0
				End-J	7.2645	Comb9	0.0615	3.014	ENV	0	3.014	ENV	0
				End-I	10.1279	ENV	0.04	0.013	ENV	0	0.013	ENV	0
	B32	112	V25X40	Middle	7.3792	ENV	0.0209	0.013	ENV	0	0.013	ENV	0
Nivel				End-J	11.2552	ENV	0.0495	0.013	ENV	0	0.013	ENV	0
3				End-I	10.1317	ENV	0.04	0.013	ENV	0	0.013	ENV	0
	B33	113	V25X40	Middle	7.3755	ENV	0.0209	0.013	ENV	0	0.013	ENV	0
				End-J	11.2514	ENV	0.0495	0.013	ENV	0	0.013	ENV	0
				End-I	7.7485	ENV	0.0656	3.014	ENV	0	3.014	ENV	0
	B34	114	V25X40	Middle	5.8779	ENV	0.0498	3.014	ENV	0	3.014	ENV	0
				End-J	7.2645	Comb9	0.0615	3.014	ENV	0	3.014	ENV	0

Nota: Cuantías Nivel 3 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 77.Cuantía Transversal de la estructura corregida vigas Nivel 2

Piso	Cód.	Núm. Viga	Sección	Ubicaci ón	V (Ton)	V Comb o	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsio n (cm²)
				End-I	7.8957	ENV	0.0668	3.624	ENV	0	3.624	ENV	0
	B31	151	V25X40	Middle	6.0251	ENV	0.051	3.624	ENV	0	3.624	ENV	0
	B32			End-J	7.4404	Comb9	0.063	3.624	ENV	0	3.624	ENV	0
		152		End-I	10.2618	ENV	0.0411	0.016	ENV	0	0.016	ENV	0
			52 V25X40	Middle	7.5149	ENV	0.0209	0.016	ENV	0	0.016	ENV	0
Nivel				End-J	11.3908	ENV	0.0507	0.016	ENV	0	0.016	ENV	0
2				End-I	10.2666	ENV	0.0412	0.016	ENV	0	0.016	ENV	0
	B33	33 153	V25X40	Middle	7.51	ENV	0.0209	0.016	ENV	0	0.016	ENV	0
				End-J	11.386	ENV	0.0506	0.016	ENV	0	0.016	ENV	0
				End-I	7.9166	ENV	0.067	3.624	ENV	0	3.624	ENV	0
	B34	154	V25X40	Middle	6.046	ENV	0.0512	3.624	ENV	0	3.624	ENV	0
	20.	154		End-J	7.4404	Comb9	0.063	3.624	ENV	0	3.624	ENV	0

Nota: Cuantías Nivel 2 obtenidos del software ETABS.

Tabla 78.Cuantía Transversal de la estructura corregida vigas Nivel 1

Piso	Cód.	Núm. Viga	Sección	Ubicaci ón	V (Ton)	V Comb o	At (cm²/c m)	T for At (Ton- cm)	T for At Combo	At Torsion (cm²/cm)	T for As (Ton-cm)	T for As Com bo	As Torsio n (cm²)
				End-I	7.7802	ENV	0.0659	3.599	ENV	0	3.599	ENV	0
	B31	191	V25X40	Middle	5.9096	ENV	0.05	3.599	ENV	0	3.599	ENV	0
				End-J	7.2997	Comb9	0.0618	3.599	ENV	0	3.599	ENV	0
				End-I	10.1631	ENV	0.0403	0.018	ENV	0	0.018	ENV	0
	B32	192	V25X40	Middle	7.4204	ENV	0.0209	0.018	ENV	0	0.018	ENV	0
Nivel		. 192		End-J	11.2964	ENV	0.0499	0.018	ENV	0	0.018	ENV	0
1				End-I	10.1724	ENV	0.0404	0.018	ENV	0	0.018	ENV	0
	B33	B33 193	193 V25X40	Middle	7.4111	ENV	0.0209	0.018	ENV	0	0.018	ENV	0
				End-J	11.2871	ENV	0.0498	0.018	ENV	0	0.018	ENV	0
				End-I	7.7458	ENV	0.0656	3.599	ENV	0	3.599	ENV	0
]	B34	194	V25X40	Middle	5.8751	ENV	0.0497	3.599	ENV	0	3.599	ENV	0
				End-J	7.2997	Comb9	0.0618	3.599	ENV	0	3.599	ENV	0

Nota: Cuantías Nivel 1 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

3.7.4.7. Cuantía transversal de columnas

Tabla 79.Cuantía transversal de la estructura corregida en columnas Nivel 5

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	C3	305	COL	Тор	4.3092	ENV	0.03	5.0641	ENV	0.0353
	CS	303	50X50	Bottom	4.3092	ENV	0.03	5.0641	ENV	0.0353
	Cº	310	COL	Тор	8.5473	ENV	0.0595	5.0057	ENV	0.0348
	C8 Nivel 5 C13	310	50X50	Bottom	8.5473	ENV	0.0595	5.0057	ENV	0.0348
Nivel 5		215	COL	Top	9.5142	ENV	0.0662	5.1052	ENV	0.0355
Mivel 5	C13	313	315 COL 50X50	Bottom	9.5142	ENV	0.0662	5.1052	ENV	0.0355
	C18	220	COL	Top	8.5473	ENV	0.0595	5.0057	ENV	0.0348
_	C16	320	50X50	Bottom	8.5473	ENV	0.0595	5.0057	ENV	0.0348
	C23	325	COL	Top	4.3092	ENV	0.03	5.0641	ENV	0.0353
	C23		50X50	Bottom	4.3092	ENV	0.03	5.0641	ENV	0.0353

Nota: Cuantías transversales Nivel 5 obtenidos del software ETABS.

Tabla 80.Cuantía transversal de la estructura corregida en columnas Nivel 4

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	C3	280	COL	Тор	2.7702	ENV	0.0193	4.5706	ENV	0.0318
	CS	280	50X50	Bottom	2.7702	ENV	0.0193	4.5706	ENV	0.0318
	C8 Nivel 4 C13	285	COL	Тор	4.8155	ENV	0.0335	3.1356	ENV	0.0218
		263	50X50	Bottom	4.8155	-	0	3.1356	-	0
Nivol 4		290	COL	Тор	5.1396	-	0	3.1552	-	0
MIVEL 4	C13		290 COL 50X50	Bottom	5.1396	-	0	3.1552	-	0
	C19	205	COL	Тор	4.8155	ENV	0.0335	3.1356	ENV	0.0218
	CIO	C18 295	50X50	Bottom	4.8155	-	0	3.1356	-	0
	C23	23 300	COL	Тор	2.7702	ENV	0.0193	4.5706	ENV	0.0318
			50X50	Bottom	2.7702	ENV	0.0193	4.5706	ENV	0.0318

Nota: Cuantías transversales Nivel 4 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 81.Cuantía transversal de la estructura corregida en columnas Nivel 3

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	С3	255	COL	Тор	2.6461	Comb8	0.023	6.2144	ENV	0.0433
	CS	233	50X50	Bottom	2.6461	Comb8	0.023	6.2144	ENV	0.0433
	C8	260	COL	Тор	5.4536	-	0	3.6092	-	0
C8 Nivel 3 C13	200	50X50	Bottom	5.4536	-	0	3.6092	-	0	
	2 265	COL	Тор	5.4887	-	0	3.6547	-	0	
Nivei 3	C13	203	265 COL 50X50	Bottom	5.4887	-	0	3.6547	-	0
	C18	270	COL	Тор	5.4536	-	0	3.6092	-	0
_	C18	270	50X50	Bottom	5.4536	-	0	3.6092	-	0
	C23	275	COL	Тор	2.6461	Comb8	0.023	6.2144	ENV	0.0433
	C23		50X50	Bottom	2.6461	Comb8	0.023	6.2144	ENV	0.0433

Nota: Cuantías transversales Nivel 3 obtenidos del software ETABS.

Tabla 82.Cuantía transversal de la estructura corregida en columnas Nivel 2

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	С3	230	COL	Тор	3.0541	Comb8	0.0266	6.8236	ENV	0.0475
	CS	230	50X50	Bottom	3.804	-	0	6.8236	-	0
	Co	235	COL	Тор	5.666	-	0	4.037	-	0
	C8	233	50X50	Bottom	5.666	-	0	4.037	-	0
Nivel 2	C13	240	COL	Тор	5.6908	-	0	4.0644	-	0
Mivei 2	C13	240	240 COL 50X50	Bottom	5.6908	-	0	4.0644	-	0
	C10	C18 245	COL	Тор	5.666	-	0	4.037	-	0
	CIO		245 50X50	Bottom	5.666	-	0	4.037	-	0
	C23	250	COL	Тор	3.0541	Comb8	0.0266	6.8236	ENV	0.0475
	C23		50X50	Bottom	3.804	-	0	6.8236	-	0

Nota: Cuantías transversales Nivel 2 obtenidos del software ETABS.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 83.Cuantía transversal de la estructura corregida en columnas Nivel 1

Piso	Cód.	Núm. Col.	Sección	Ubicación	V Major (Ton)	V Major Combo	At Major (cm²/cm)	V Minor (Ton)	V Minor Combo	At Minor (cm²/cm)
	C3	205	COL	Тор	3.7573	-	0	6.4467	-	0
	CS	203	50X50	Bottom	3.7573	-	0	6.4467	-	0
	C8 Nivel 1 C13	210	COL	Тор	5.5019	-	0	3.667	-	0
		210	50X50	Bottom	5.5019	-	0	3.667	-	0
N71 1		3 215	COL	Тор	5.546	-	0	3.7054	-	0
Nivel 1	C13		50X50	Bottom	5.546	-	0	3.7054	-	0
	C10	220	COL	Тор	5.5019	-	0	3.667	-	0
	C18	220	50X50	Bottom	5.5019	-	0	3.667	-	0
	C22	225	COL	Тор	3.7573	-	0	6.4467	-	0
	C23		50X50	Bottom	3.7573	-	0	6.4467	-	0

Nota: Cuantías transversales Nivel 1 obtenidos del software ETABS.

3.8. Comparación de Datos

3.8.1. Comparación de periodos en los tres modelamientos

Tabla 84.

Comparación de periodos y frecuencia de los modelos analizados

Nota: Periodos con rigidez, sin rigidez y modificados. Comparación entre la estructura con rigidez y sin rigidez.

NUMERO DE PISO	ЕЈЕ		EDIFICIO CON RIGIDEZ		EDIFICIO SIN RIGIDEZ		FICIO BRADO	DIFERENCIA ENTRE EDIFICIO CON RIGIDEZ Y
DE FISO		Periodos "seg"	Frecuencia "cir./seg"	Periodos "seg"	Frecuencia "cir./seg"	Periodos "seg"	Frecuencia ''cir./seg''	SIN RIGIDEZ (%)
	1	0.644	1.553	0.769	1.300	0.644	1.552	16%
Nivel 1	2	0.604	1.656	0.737	1.357	0.606	1.652	18%
	3	0.512	1.952	0.588	1.702	0.506	1.950	13%
	4	0.197	5.088	0.232	4.308	0.195	5.084	15%
Nivel 2	5	0.186	5.367	0.225	4.454	0.188	5.366	17%
	6	0.160	6.260	0.182	5.484	0.157	6.260	12%
	7	0.103	9.687	0.120	8.345	0.101	9.685	14%
Nivel 3	8	0.100	10.048	0.118	8.511	0.098	10.048	15%
	9	0.087	11.530	0.098	10.189	0.086	11.525	11%
	10	0.066	15.178	0.075	13.266	0.065	15.175	12%
Nivel 4	11	0.065	15.456	0.075	13.379	0.064	15.455	13%
	12	0.057	17.532	0.064	15.629	0.056	17.529	11%
	13	0.050	20.077	0.056	17.700	0.050	20.075	11%
Nivel 5	14	0.050	20.169	0.056	17.734	0.049	20.167	11%
	15	0.044	22.728	0.049	20.383	0.043	22.727	10%

3.8.2. Comparación de derivas en los tres modelamientos

Tabla 85. *Comparación de derivas de los modelos analizados*

NUMERO DE PISO	DIRECCIÓN DE SISMO (U)	EDIFICIO CON RIGIDEZ		EDIFICIO SIN RIGIDEZ		EDIFICIO CALIBRADO		EXCEDENCIA DE DERIVA ENTRE EDIFICIO SIN RIGIDEZ VS CON
	. ,	Drift	Deriva	Drift	Deriva	Drift	Deriva	RIGIDEZ EN LOSA
Nivel 1	UX	0.000460	0.002760	0.000650	0.003900	0.000458	0.002750	41%
	UY	0.000515	0.003090	0.000601	0.003606	0.000505	0.003030	17%
Nr. 12	UX	0.000760	0.004560	0.001013	0.006078	0.000758	0.004550	33%
Nivel 2	UY	0.000830	0.004980	0.000955	0.005730	0.000817	0.004902	15%
Ni-mal 2	UX	0.001003	0.006018	0.001300	0.007800	0.000991	0.005946	30%
Nivel 3	UY	0.001084	0.006504	0.001238	0.007428	0.001068	0.006408	14%
Ni-ual 4	UX	0.001080	0.006480	0.001359	0.008154	0.001061	0.006366	26%
Nivel 4	UY	0.001152	0.006912	0.001311	0.007866	0.001125	0.006750	14%
Nivel 5	UX	0.000672	0.004032	0.000797	0.004782	0.000667	0.004002	19%
	UY	0.000692	0.004152	0.000786	0.004716	0.000686	0.004116	14%

Nota: Derivas con rigidez, sin rigidez y modificados. Comparación entre la estructura con rigidez y sin rigidez.

3.8.3. Comparación de Cuantías longitudinal de viga en los tres modelamientos Tabla 86.

Cuantías Longitudinal en vigas de los modelos analizados, Nivel 5

Núm. Piso	VIGA	Ubi.	EDIFICIO CON RIGIDEZ		EDIFICIO SIN RIGIDEZ		EDIFICIO CALIBRADO	
			As. Top. (cm2)	As. Bot. (cm2)	As. Top. (cm2)	As. Bot. (cm2)	As. Top. (cm2)	As. Bot. (cm2)
		Inicio	1.51	0.78	3.67	2.39	3.47	5.084
	31	Medio	0.37	0.95	1.22	3.14	1.16	5.366
		Final	1.47	0.73	3.79	2.46	3.6	6.260
		Inicio	1.88	0.93	4.77	3.08	4.59	9.685
	32	Medio	0.47	1.23	1.55	3.86	1.5	10.048
E		Final	1.93	0.95	4.88	3.14	4.7	11.525
5		Inicio	1.93	0.95	4.88	3.14	4.7	15.175
	33	Medio	0.47	1.23	1.55	3.86	1.5	15.455
		Final	1.88	0.93	4.77	3.08	4.59	17.529
		Inicio	1.47	0.73	3.79	2.46	3.6	20.075
	34	Medio	0.37	0.95	1.22	3.14	1.16	20.167
		Final	1.51	0.78	3.67	2.39	3.47	22.727

Nota: Cuantía de viga longitudinal con rigidez, sin rigidez y modificados.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 87. *Cuantías Longitudinal en vigas de los modelos analizados, Nivel 4*

Núm. Piso	VIGA	Ubi.	EDIFICIO CON RIGIDEZ		EDIFICIO SIN RIGIDEZ		EDIFICIO CALIBRADO	
			As. Top. (cm2)	As. Bot. (cm2)	As. Top. (cm2)	As. Bot. (cm2)	As. Top. (cm2)	As. Bot. (cm2)
		Inicio	2.57	1.27	4.87	3.14	4.55	2.94
	71	Medio	0.63	1.02	1.55	3.14	1.45	3.14
		Final	2.07	1.17	4.32	2.8	4	2.6
		Inicio	2.63	1.3	5.59	3.14	5.28	3.14
	72	Medio	0.65	1.23	1.76	3.84	1.67	3.84
		Final	2.62	1.29	5.59	3.14	5.29	3.14
4		Inicio	2.62	1.29	5.59	3.14	5.29	3.14
	73	Medio	0.65	1.23	1.76	3.84	1.67	3.84
		Final	2.63	1.3	5.59	3.14	5.28	3.14
		Inicio	2.07	1.17	4.32	2.8	4	2.6
	74	Medio	0.63	1.02	1.55	3.14	1.45	3.14
		Final	2.57	1.27	4.87	3.14	4.55	2.94

Nota: Cuantía de viga longitudinal con rigidez, sin rigidez y modificados.

Tabla 88.Cuantías Longitudinal en vigas de los modelos analizados, Nivel 3

Núm. Piso	VIGA	Ubi.	EDIFICIO CON RIGIDEZ		EDIFICIO SIN RIGIDEZ		EDIFICIO CALIBRADO	
			As. Top. (cm2)	As. Bot. (cm2)	As. Top. (cm2)	As. Bot. (cm2)	As. Top. (cm2)	As. Bot. (cm2)
		Inicio	3.14	1.77	5.59	3.14	5.13	3.14
	111	Medio	0.8	1.3	1.76	3.14	1.62	3.14
		Final	2.95	1.9	5.27	3.14	4.82	3.11
	112	Inicio	3.14	1.63	6.31	3.14	5.89	3.14
		Medio	0.81	1.3	1.99	3.84	1.86	3.84
2		Final	3.14	1.63	6.35	3.14	5.93	3.14
3		Inicio	3.14	1.63	6.35	3.14	5.93	3.14
	113	Medio	0.81	1.3	1.99	3.84	1.86	3.84
		Final	3.14	1.63	6.31	3.14	5.89	3.14
	114	Inicio	2.95	1.9	5.27	3.14	4.82	3.11
		Medio	0.8	1.3	1.76	3.14	1.62	3.14
		Final	3.14	1.77	5.59	3.14	5.13	3.14

Nota: Cuantía de viga longitudinal con rigidez, sin rigidez y modificados.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 89.Cuantías Longitudinal en vigas de los modelos analizados, Nivel 2

Núm. Piso	VIGA	Ubi.	EDIFICIO CON RIGIDEZ		EDIFICIO SIN RIGIDEZ		EDIFICIO CALIBRADO	
			As. Top. (cm2)	As. Bot. (cm2)	As. Top. (cm2)	As. Bot. (cm2)	As. Top. (cm2)	As. Bot. (cm2)
		Inicio	3.14	2.31	6.07	3.14	5.52	3.14
	151	Medio	0.91	1.51	1.9	3.14	1.74	3.14
		Final	3.14	2.38	5.85	3.14	5.31	3.14
	152	Inicio	3.14	1.84	6.76	3.22	6.27	3.14
		Medio	0.91	1.44	2.12	3.84	1.97	3.84
2		Final	3.14	1.84	6.81	3.24	6.31	3.14
2		Inicio	3.14	1.84	6.81	3.24	6.31	3.14
	153	Medio	0.91	1.44	2.12	3.84	1.97	3.84
		Final	3.14	1.84	6.76	3.22	6.27	3.14
		Inicio	3.14	2.38	5.85	3.14	5.31	3.14
	154	Medio	0.91	1.51	1.9	3.14	1.74	3.14
		Final	3.14	2.31	6.07	3.14	5.52	3.14

Nota: Cuantía de viga longitudinal con rigidez, sin rigidez y modificados.

Tabla 90.Cuantías Longitudinal en vigas de los modelos analizados, Nivel 2

Núm. Piso	VIGA	Ubi.	EDIFICIO CON RIGIDEZ		EDIFICIO SIN RIGIDEZ		EDIFICIO CALIBRADO	
			As. Top. (cm2)	As. Bot. (cm2)	As. Top. (cm2)	As. Bot. (cm2)	As. Top. (cm2)	As. Bot. (cm2)
		Inicio	3.14	2.23	5.53	3.14	5.04	3.14
	191	Medio	0.85	1.51	1.78	3.14	1.64	3.14
		Final	3.14	2.12	5.66	3.14	5.18	3.14
		Inicio	3.14	1.73	6.39	3.14	5.96	3.14
	192	Medio	0.86	1.37	2.02	3.84	1.89	3.84
1		Final	3.14	1.74	6.48	3.14	6.04	3.14
1		Inicio	3.14	1.74	6.48	3.14	6.04	3.14
	193	Medio	0.86	1.37	2.02	3.84	1.89	3.84
		Final	3.14	1.73	6.39	3.14	5.96	3.14
		Inicio	3.14	2.12	5.66	3.14	5.18	3.14
	194	Medio	0.85	1.51	1.78	3.14	1.64	3.14
		Final	3.14	2.23	5.53	3.14	5.04	3.14

Nota: Cuantía de viga longitudinal con rigidez, sin rigidez y modificados.

Elaborado por: (Alfonzo & Barrionuevo, 2023)

3.8.4. Comparación de Cuantías Transversal de viga en los tres modelamientos Tabla 91.

Cuantía transversal en vigas de los modelos analizados, Nivel 5

NUMERO DE PISO	VIGA	EJE	EDIFICIO CON RIGIDEZ	EDIFICIO SIN RIGIDEZ	EDIFICIO CALIBRADO
			At. (cm2/cm)	At. (cm2/cm)	At. (cm2/cm)
		Inicio	0.017	0.0265	0.0253
	31	Medio	0.0128	0.0209	0.0209
		Final	0.0161	0.0344	0.0332
_		Inicio	0.0209	0.0365	0.0356
	32	Medio	0.0148	0.0209	0.0209
5		Final	0.0209	0.0461	0.0452
5 –		Inicio	0.0209	0.0367	0.0357
	33	Medio	0.0149	0.0209	0.0209
		Final	0.0209	0.046	0.0451
_		Inicio	0.017	0.0268	0.0255
	34	Medio	0.0129	0.0209	0.0209
		Final	0.0162	0.0342	0.033

Nota: Cuantía de viga transversal con rigidez, sin rigidez y modificados.

Tabla 92.Cuantía transversal en vigas de los modelos analizados, Nivel 4

NUMERO DE PISO	VIGA	EJE	EDIFICIO CON RIGIDEZ	EDIFICIO SIN RIGIDEZ	EDIFICIO CALIBRADO
			At. (cm2/cm)	At. (cm2/cm)	At. (cm2/cm)
		Inicio	0.027	0.0594	0.0305
	71	Medio	0.0206	0.0435	0.0209
		Final	0.0282	0.0594	0.0377
		Inicio	0.0275	0.039	0.038
	72	Medio	0.019	0.0209	0.0209
4		Final	0.0274	0.0485	0.0476
4 -		Inicio	0.0274	0.039	0.038
	73	Medio	0.019	0.0209	0.0209
		Final	0.0275	0.0485	0.0476
-		Inicio	0.0264	0.0594	0.0298
	74	Medio	0.021	0.0435	0.0209
		Final	0.0288	0.0594	0.0384

Nota: Cuantía de viga transversal con rigidez, sin rigidez y modificados

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 93.Cuantía transversal en vigas de los modelos analizados, Nivel 3

NUMERO DE PISO	VIGA	EJE	EDIFICIO CON RIGIDEZ At. (cm2/cm)	EDIFICIO SIN RIGIDEZ At. (cm2/cm)	EDIFICIO CALIBRADO At. (cm2/cm)
		Inicio	0.0322	0.067	0.0653
	111	Medio	0.0259	0.0512	0.0494
		Final	0.0334	0.0633	0.0615
		Inicio	0.0307	0.0413	0.04
	112	Medio	0.0236	0.0209	0.0209
3		Final	0.0329	0.0508	0.0495
3		Inicio	0.0306	0.0413	0.04
	113	Medio	0.0235	0.0211	0.0209
-		Final	0.033	0.0508	0.0495
		Inicio	0.0317	0.0674	0.0656
	114	Medio	0.0261	0.0515	0.0498
		Final	0.0339	0.0633	0.0615

Nota: Cuantía de viga transversal con rigidez, sin rigidez y modificados

Tabla 94.Cuantía transversal en vigas de los modelos analizados, Nivel 2

NUMERO DE PISO	VIGA	EJE	EDIFICIO CON RIGIDEZ	EDIFICIO SIN RIGIDEZ	EDIFICIO CALIBRADO
			At. (cm2/cm)	At. (cm2/cm)	At. (cm2/cm)
		Inicio	0.034	0.0688	0.0668
	151	Medio	0.0279	0.0529	0.051
		Final	0.0354	0.0649	0.063
_		Inicio	0.0314	0.0672	0.0411
	152	Medio	0.0243	0.0487	0.0209
2 -		Final	0.0336	0.0672	0.0507
Δ –		Inicio	0.0313	0.0672	0.0412
	153	Medio	0.0243	0.0487	0.0209
		Final	0.0337	0.0672	0.0506
_		Inicio	0.0337	0.0689	0.067
	154	Medio	0.028	0.0531	0.0512
		Final	0.0357	0.0649	0.063

Nota: Cuantía de viga transversal con rigidez, sin rigidez y modificados

Elaborado por: (Alfonzo & Barrionuevo, 2023)

Tabla 95.Cuantía transversal en vigas de los modelos analizados, Nivel 1

NUMERO DE PISO	VIGA	EJE	EDIFICIO CON RIGIDEZ At. (cm2/cm)	EDIFICIO SIN RIGIDEZ At. (cm2/cm)	EDIFICIO CALIBRADO At. (cm2/cm)
		Inicio	0.0332	0.0676	0.0659
	191	Medio	0.0332	0.0517	0.05
	171	Final	0.0349	0.0635	0.0618
		Inicio	0.031	0.0416	0.0403
	192	Medio	0.024	0.0214	0.0209
	1,2	Final	0.0332	0.0512	0.0499
1		Inicio	0.0309	0.0417	0.0404
	193	Medio	0.0239	0.0218	0.0209
_	-,-	Final	0.0333	0.0511	0.0498
		Inicio	0.0332	0.0673	0.0656
	194	Medio	0.0272	0.0514	0.0497
		Final	0.035	0.0635	0.0618

Nota: Cuantía de viga transversal con rigidez, sin rigidez y modificados

3.8.5. Comparación de Cuantías longitudinal de columnas de los modelamientos Tabla 96. Comparación de cuantías longitudinales en columnas

NUMERO DE PISO	VIGA	EJE	EDIFICIO CON RIGIDEZ			EDIFICIO SIN RIGIDEZ			EDIFICIO CALIBRADO		
			P (Ton)	M Mayor (Ton- cm)	M Menor (Ton- cm)	P (Ton)	M Mayor (Ton-cm)	M Menor (Ton-cm)	P (Ton)	M Mayor (Ton-cm)	M Menor (Ton- cm)
1	205	ARRIBA	56,8975	160,035	-854,814	66,1037	285,263	-922,245	64,8772	266,675	-843,422
		ABAJO	21,9508	-908,273	981,879	67,9419	-1038,989	1112,687	66,7153	-885,77	928,106
	210	ARRIBA	93,0279	178,029	569,727	113,6978	756,436	-112,661	113,6978	725,143	-91,041
		ABAJO	94,9021	-906,877	887,677	115,572	-1002,167	1002,508	115,572	-881,305	836,051
	215	ARRIBA	98,4565	-132,182	-579,067	120,5573	47,608	-568,593	120,5573	-33,874	-485,136
		ABAJO	100,331	879,773	887,433	122,4314	964,717	-1001,864	122,4314	806,358	-835,514
	220	ARRIBA	93,0279	-178,029	-569,727	113,6978	-756,436	-112,661	113,6978	-725,143	91,041
		ABAJO	94,9021	906,877	887,677	115,572	1002,167	1002,508	115,572	881,305	836,051
	225	ARRIBA	56,8975	-160,035	-854,814	66,1037	-285,263	-922,245	64,8772	-266,675	-843,422
		ABAJO	21,9508	908,273	981,879	67,9419	1038,989	1112,687	66,7153	885,77	928,106
2	230 235	ARRIBA	44,8468	396,077	906,138	52,4523	394,17	959,99	51,5151	358,485	893,198
		ABAJO	18,2845	-629,336	883,681	54,2905	-700,376	1002,073	53,3532	-637,499	843,422
		ARRIBA	74,0136	449,584	-613,277	90,6445	782,33	-414,505	90,6445	-747,421	-345,007
		ABAJO	75,8877	-671,587	589,543	92,5187	756,436	-658,05	92,5187	725,143	-550,625
	240	ARRIBA	78,5599	-376,166	624,918	96,2373	-794,104	-413,22	96,2373	-750,79	343,928
		ABAJO	80,4341	568,627	588,861	98,1115	762,569	656,151	98,1115	731,114	-549,035
	2.1.5	ARRIBA	74,0136	-449,584	613,277	90,6445	-782,33	414,505	90,6445	-747,421	-345,007
	245	ABAJO	75,8877	671,587	-589,543	92,5187	756,436	-658,05	92,5187	725,143	-550,625
	250	ARRIBA	44,8468	-396,077	-906,138	52,4523	-394,17	-959,99	51,5151	-358,485	-893,198
		ABAJO	18,2845	629,336	883,681	54,2905	700,376	1002,073	53,3532	637,499	843,422
3	255 260	ARRIBA	13,2493	434,869	-821,39	18,7021	471,065	-891,785	37,6893	430,25	812,809
		ABAJO	14,6279	-468,828	906,138	20,0807	-486,705	959,99	20,6958	-448,823	-893,198
		ARRIBA	55,0057	466,445	553,74	67,5126	-750,794	-450,423	67,5126	-718,644	376,672
		ABAJO	56,8799	-506,15	613,277	69,3868	782,33	466,513	69,3868	747,421	-388,677
	265	ARRIBA	58,4761	396,691	-566,372	71,7335	-753,573	449,324	71,7335	-723,347	375,75
		ABAJO	60,3503	-412,951	624,918	73,6076	794,104	-464,917	73,6076	-750,79	-387,336
	270	ARRIBA	55,0057	-466,445	-553,74	67,5126	750,794	450,423	67,5126	-718,644	376,672
		ABAJO	56,8799	506,15	613,277	69,3868	782,33	-466,513	69,3868	747,421	-388,677
	275	ARRIBA	13,2493	-434,869	821,39	18,7021	-471,065	-891,785	37,6893	-430,25	-812,809
		ABAJO	14,6279	468,828	906,138	20,0807	486,705	959,99	20,6958	448,823	-893,198
4	280	ARRIBA	9,0741	383,349	-629,079	12,5125	423,643	-711,2	12,8466	380,356	-596,452
		ABAJO	10,4527	-350,54	-821,39	13,8911	-383,021	-891,785	14,2252	-354,896	-812,809
	285	ARRIBA	36,0289	395,848	-459,411	44,3686	671,261	388,332	44,3686	-633,342	324,148
		ABAJO	37,9031	-345,423	553,74	46,2428	750,794	-295,347	46,2428	718,644	-241,407
	290	ARRIBA	38,3457	-338,257	473,756	47,1822	-698,408	387,67	47,1822	-676,177	323,597
		ABAJO	40,2199	-263,329	566,372	49,0563	-753,573	-294,164	49,0563	723,347	-240,412
	295	ARRIBA	36,0289	-395,848	-459,411	44,3686	671,261	388,332	44,3686	-633,342	324,148
		ABAJO	37,9031	345,423	553,74	46,2428	750,794	-295,347	46,2428	718,644	-241,407
			•	•	,	•	•	•	•	•	

	300	ARRIBA	9,0741	-383,349	629,079	12,5125	-423,643	-711,2	12,8466	-380,356	-596,452
	300	ABAJO	10,4527	350,54	821,39	13,8911	383,021	891,785	14,2252	354,896	-812,809
5	305	ARRIBA	4,0499	421,272	-731,622	5,659	541,962	-747,797	5,7864	516,727	-658,866
		ABAJO	5,4285	-300,323	-629,079	7,0376	-426,989	711,2	7,165	-410,321	596,452
	310	ARRIBA	8,6531	300,045	-790,666	11,7936	-1167,989	269,36	11,8225	-1121,886	222,222
		ABAJO	10,0588	-193,144	-459,411	13,1992	-671,261	-130,958	13,2281	-633,342	-102,092
	315	ARRIBA	9,3421	229,47	-799,522	12,6836	-1292,798	268,54	12,6836	-1249,77	221,551
		ABAJO	19,9383	112,711	473,756	14,0892	698,408	-130,142	14,0892	676,177	-101,409
	320	ARRIBA	8,6531	-300,045	790,666	11,7936	1167,989	-269,36	11,8225	-1121,886	222,222
		ABAJO	10,0588	193,144	459,411	13,1992	671,261	130,958	13,2281	633,342	-102,092
	325	ARRIBA	4,0499	-421,272	-731,622	5,659	-541,962	-747,797	5,7864	-516,727	658,866
		ABAJO	5,4285	300,323	629,079	7,0376	426,989	-711,2	7,165	410,321	596,452

Nota: Cuantía longitudinal de columnas con rigidez, sin rigidez y modificados

CONCLUSIONES

El presente proyecto se basó en el diseño y análisis de una edificación de hormigón armado de 5 pisos en el cual se implementó un prediseño de las secciones estructurales tales como las vigas, columnas. Además, se desarrolló un modelamiento a través de software ETABS en el cual se comparó las derivas de piso, períodos de vibración, reacciones y cuantías.

- Se prediseño las secciones de las estructuras que son parte de la edificación basado en las normativas NEC-SE-HM, NEC-SE-CG, NEC-SE-DS, ACI 318S-19. Donde a través de las recomendaciones del ACI 318-19 para diseño de losas macizas, aplicando el teorema de Steiner se encontró el espesor de la losa alivianada equivalente la cual fue 25cm donde tendremos una losa de compresión de 5cm, nervios de 10cm de ancho y 20cm de altura. Además, se obtuvieron las dimensiones de las columnas de 50x50 cm y vigas de 25x40 cm.
- En el primer análisis se desarrolló un modelo de la edificación considerando la rigidez de las losas, en el segundo modelo se desarrolló la edificación sin considerar la rigidez de las losas y en el tercero es el modelo calibrado en el cual se modificó la masa del segundo modelo sin considerar rigidez con el fin de igualar periodos al primer modelo en el cual se consideró la rigidez de las losas. Con esto se realizaron las comparaciones de periodos, derivas, reacciones, cuantía de acero longitudinal y transversal en vigas y columnas.
- Podemos observar que para el modelo de la edificación donde consideramos la rigidez de las losas, se obtuvieron menores periodos de vibración a comparación del modelo de la edificación donde no se consideró la rigidez de la losa (ver **Tabla 84**.), teniendo en cuenta la ecuación del periodo $T = \frac{2 \times \pi}{\sqrt[2]{\frac{K}{M}}}$ podemos concluir que a mayores valores

de rigideces, menores valores de periodo y viceversa.

 De igual manera se puede observar que si consideramos las rigideces de las losas al momento de realizar el análisis de la edificación, se obtienen menores porcentajes de derivas a comparación del modelo en el cual no se consideran las rigideces de las losas.

RECOMENDACIONES

- 1. En el Ecuador es muy común que al momento de realizar una modelación estructural al momento de modelar las losas, estas se realicen como una membrana en la cual no se tiene en cuenta su rigidez real, simplemente se le coloca un diafragma rígido, sin saber si es lo más adecuado o no, ya que esto no es del todo cierto, es por eso que se recomienda que para obtener resultados más óptimos de una estructura, se tiene que considerar la rigidez de la losa en cualquier software de análisis estructural, ya que si se ingresa como un diafragma rígido, que es una condición cinética donde todos los nodos se mueven basándose en el centro de masa de la estructura, lo cual nos puede arrojar resultados que no son precisos y con esto no tendríamos un correcto diseño de la estructura, pudiendo ocasionar algún tipo de falla a largo plazo.
- 2. Se recomienda que, para proceder a realizar un prediseño de elementos estructurales, ya sea en hormigón armado o en acero estructural, basarse en las Norma Ecuatoriana de la Construcción, porque a su vez indica algunas directrices para tener en cuenta los factores posibles que afecten la estructura, de igual manera trabajar con normativas internacionales direccionadas al análisis estructural como es la ACI 318S-19, esta última con respecto a hormigón armado.
- 3. Para que el diseño de la edificación cumpla con su vida útil es necesario desarrollar un estudio de suelo en donde se encontrara situada la edificación, esto aportara que si la ubicación de la estructura necesitara realizarse una mejoría y así obtener una buena adhesión entre la cimentación de la estructura y el suelo.

BIBLIOGRAFÍA

- Abdullah, F., & Islam, Z. (2021). Estudio Comparativo de Edificio Residencial de Varias Plantas (G+3) utilizando Software ETABS y Cálculo Manual. *Diario de Tecnología Estructural Volumen 6, Número 2*, 00-08.
- Alava, C. V. (Diciembre de 2020). *Universitat Politècnica de València Depatamento de Ingeniería de la Construcción y de proyectos de Ingeniería Civil Repositorio Institucional UPV*. Obtenido de ANÁLISIS NO-LINEAL DE FORJADOS DE LOSA MACIZA DE HORMIGÓN ARMADO. DETERMINACIÓN DEL FACTOR DE SEGURIDAD DE RESISTENCIA GLOBAL DE ACUERDO CON EL MC-2010 : http://hdl.handle.net/10251/179564
- Alfonzo, M., & Barrionuevo, D. (2023). Diseño de edificaciones en hormigón armado regulares con sistemas de pórticos resistentes a momentos, sus efectos de la modelación de las losas y comportamiento sismo resistente. Guayaquil.
- Astudillo C., L. (2014). Edificios de la capital son evacuados después del sismo de 5.2. Evacuaciones de edificios durante el sismo. Andes, Quito, Ecuador.
- Cencia, J. P. (2017). Universidad Peruana Los Andes Repositorio Institucional UPLA. Obtenido de APLICACIÓN DEL SOFTWARE ETABS EN EL ANÁLISIS Y DISEÑO ESTRUCTURAL DE MUROS DE DUCTILIDAD LIMITADA EN VIVIENDAS DE CONCRETO ARMADO DEL DISTRITO DE EL TAMBO-HUANCAYO 2017: https://hdl.handle.net/20.500.12848/935
- Chávarry, A. N. (abril de 2015). *Universidad Nacional de Cajamarca Repositorio Institucional*. Obtenido de Comparación del comportamiento estructural y económico de losas colaborantes unidireccionales con losas aligeradas.: https://repositorio.unc.edu.pe/handle/20.500.14074/482
- Christian, V. (2016). Foto de archivo del terremoto del 2016 con epicentro en Pedernales. *El sismo registrado en Guayas tiene similitudes con el terremoto del 16 de abril de 2016*. Expreso, Guayaquil, Ecuador. Obtenido de https://www.expreso.ec/actualidad/sismo-registrado-guayas-similitudes-terremoto-16-abril-2016-131615.html
- Civil, C. (24 de Junio de 2005). *Lexis*. Obtenido de Lexis: https://www.aguaquito.gob.ec/sites/default/files/documentos/libro_ii_0.pdf
- Daniela. (2015). Losas y Vigas. Arquitectos revista, 2-18.
- Ecuador, C. d. (20 de Octubre de 2008). *Lexis*. Obtenido de Lexis: https://www.oas.org/juridico/pdfs/mesicic4_ecu_const.pdf
- Estrada Núñez, G. I., & Núñez Calle, M. E. (2021). *Rigidez, altura, y agrietamiento en el cálculo del periodo*. Universidad Cesár Vallejo, Chiclayo, Perú. Obtenido de https://hdl.handle.net/20.500.12692/83783
- FenArq. (05 de Julio de 2022). FenArq. Obtenido de FenArq Diseño estructural, ¿Que es, Criterios y Cual es su Proceso?: https://www.fenarq.com/2022/07/diseno-estructural.html

- Guevara, P. T. (2014). *Norma Ecuatoriana de la Construcción Geótecnia y Cimentaciones*. Quito: Dirección de Comunicación Social, MIDUVI.
- Lascano, J. A. (2015). *Pontificia Universidad Católica del Ecuador Repositorio de Tesis de Grado y Posgrado*. Obtenido de Comparación del comportamiento a la resonancia entre estructuras con muros de corte duales y estructuras con pórticos resistentes a momento para un suelo típico de Quito: http://repositorio.puce.edu.ec/handle/22000/11890
- Manzano, M. J. (Septiembre de 2019). *Universidad de Guayaquil. Facultad de Ciencias Matemáticas y Físicas. Carrera de Ingeniería Civil.* Obtenido de GUÍA PRÁCTICA PARA LA CONSTRUCCIÓN DE LOSAS ALIVIANADAS "TECNILOSA": http://repositorio.ug.edu.ec/handle/redug/47717
- Moncayo Theurer, M., Velasco, G., Mora, C., Montenegro, M., & Cordova, J. (2017). Terremotos mayores a 6.5 en escala Richter ocurridos en ecuador desde 1900 hasta 1970. *Ingeniería, Revista Académica de la FIUADY, 21*(2), 55-64. Obtenido de https://www.redalyc.org/journal/467/46753192005/html/
- NEC, N. E. (20 de 05 de 2015). *CARGAS SÍSMICAS DISEÑO SISMO RESISTENTE*. Obtenido de CARGAS SÍSMICAS DISEÑO SISMO RESISTENTE: https://amevirtual.gob.ec/wp-content/uploads/2017/05/MTOP_NEC-SE-DS.pdf
- Niño, V. E. (08 de Junio de 2014). *SlideShare Instituto Universitario Politécnico Santiago Mariño Barinas extension Barquisimeto*. Obtenido de Sistemas Estructurales: https://es.slideshare.net/1964victoria/sistemas-estructurales-35624621
- Núñez Calle, M. E.-E. (2021). *Universidad Cesar Vallejo*. Obtenido de Universidad Cesar Vallejo-Repositorio UCV: https://hdl.handle.net/20.500.12692/83783
- Piñeira, M. G. (01 de junio de 2022). *Universidad Politécnica de Madrid Archivo Digital UPM*. Obtenido de Grandes voladizos en la arquitectura. Análisis estructural de los voladizos presentes en la Casa Hemeroscopium, la Villa El Mediterraneo y el Estadio San Nicola: https://oa.upm.es/70633/
- Ponce, M., & Santo, N. B. (2022). Informe Sísmico Especial No. 2022-005SISMO AL NORESTE DE LA AURORA DAULE GUAYAS. *INFORME*. INSTITUTO GEOFÍSICOESCUELA POLITÉCNICA NACIONAL, Quito.
- Portilla, D. J. (2022). "ANÁLISIS DE LA INFLUENCIA DEL MODELADO DE LOSAS POR ELEMENTOS TIPO SHELL Y MEMBRANA EN EL DISEÑO ESTRUCTURAL DE UN EDIFICIO DE 4 PISOS, UTILIZANDO UN SOFTWARE DE DISEÑO ESPECIALIZADO". Ambato: UNIVERSIDAD TÉCNICA AMBATO.
- Q., I. (5 de Julio de 2022). *Arkux*. Obtenido de ¿Qué es el diseño estructural?: https://arcux.net/blog/que-es-el-diseno-estructural/
- Reyes, A. S. (2017). *Universidad Peruana Los Andes Repositorio Institucional Facultad de Ingenieria*. Obtenido de Comparación del Análisis y Diseño de Losas Aligeradas Bidireccionales y Losas Macizas en Edificaciones de 5 Pisos Distrito de Chilca, 2017: https://repositorio.upla.edu.pe/handle/20.500.12848/792

- Teleamazonas. (2019). Decenas de casas se vieron afectadas por el Sismo de 6.32 en Santa Elena. *Reportan 50 réplicas tras sismo de magnitud 6,5 en Salinas*. La republica Ec, Salinas.
- Theurer, M. M. (2017). Terremotos mayores a 6.5 en escala Richter ocurridos en Ecuador desde 1900 hasta 1970. *Ingeniería Revista Académica y Divulgación*, 1.
- Ulloa, B. (19 de Marzo de 2020). *Mundial medios*. Obtenido de https://mundialmedios.com/elterremoto-de-riobamba-1797/