

UNIVERSIDAD LAICA VICENTE ROCAFUERTE DE GUAYAQUIL

FACULTAD DE INGENIERÍA, INDUSTRIA Y CONSTRUCCIÓN CARRERA DE INGENIERIA CIVIL

PROYECTO DE INVESTIGACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE

INGENIERO CIVIL

TEMA

REHABILITACIÓN DE LA VÍA PUERTO PECHICHE Y CRUCE A VINCES – MOCACHE CANTÓN PUEBLOVIEJO, PROVINCIA DE LOS RÍOS.

TUTOR

MG. ING. CIVIL CARLOS LUIS VALERO FAJARDO

AUTORES

LÓPEZ CABRERA DIEGO ALBERTO

SALAZAR RODRIGUEZ MIGUEL ANGEL

REPOSITORIO NACIONAL EN CIENCIA Y TECNOLOGÍA

FICHA DE REGISTRO DE TESIS

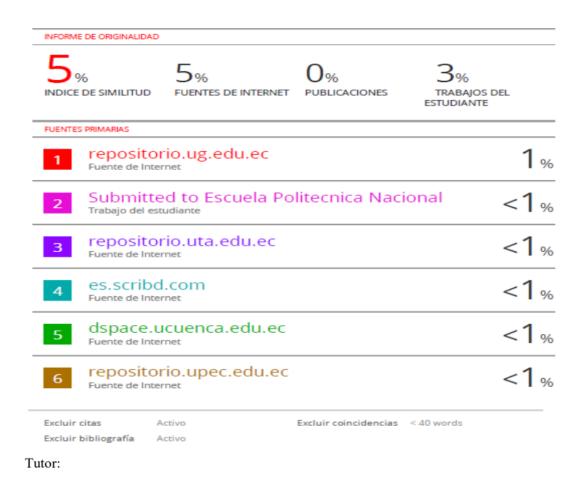
TÍTULO Y SUBTÍTULO:

Rehabilitación De La Vía Puerto Pechiche Y Cruce A Vinces - Mocache Cantón Pueblo viejo, Provincia De Los Ríos.

AUTOR/ES:	REVISORES O TUTORES:
López Cabrera Diego Alberto	Mg. Ing. Civil Carlos Luis Valero Fajardo
Salazar Rodríguez Miguel Ángel	
INSTITUCIÓN:	Grado obtenido:
Universidad Laica Vicente	Tercer Nivel
Rocafuerte de Guayaquil	
FACULTAD:	CARRERA:
FACULTAD DE INGENIERIA,	INGENIERIA CIVIL
INDUSTRIA Y CONSTRUCCIÓN.	
FECHA DE PUBLICACIÓN:	N. DE PAGS:
2022	130
,	

ÁREAS TEMÁTICAS: Arquitectura y Construcción.

PALABRAS CLAVE: carretera, asfalto, tráfico, topografía, mantenimiento.


RESUMEN:

Este trabajo académico tiene como finalidad traer un estudio de la vía para la rehabilitación adecuada empezando por un conteo vehicular dando así el promedio de tráfico futuro y las diferentes características normadas de la vía por la MTOP (MINISTERIO DE TRANSPORTE Y OBRAS PUBLICAS), como su clase y diseño de la carretera, adicional

se realizó una topografía para comprobar la longitud y ancho de la carretera así como las condiciones actuales que se encuentra, se pudo constatar que es de suma importancia un recapeo en dicha vía y con un buen diseño de mescla asfáltica guiada por la ASHTTO 93 para pavimento asfaltico por medio del método Marshall guiamos al estudio en una mezcla de sencillos pasos para poder realizar dicha metodología paso a paso en una guía explicativa realizada en este trabajo para futuras referencias, dando así la mezcla optima de asfalto para la carretera en estudio.

N. DE REGISTRO (en base de datos):	N. DE CLASIFICAC	IÓN:
DIRECCIÓN URL (tesis en la web)	:	
ADJUNTO PDF:	SI X	NO
CONTACTO CON AUTOR/ES:	Teléfono:	E-mail:
Salazar Rodríguez Miguel Ángel	0962745989	msalazarro@ulvr.edu.ec
López Cabrera Diego Alberto	0939385467	dlopezca@ulvr.edu.ec
CONTACTO EN LA	Mg. Ing. Milton Gabrie	el Andrade Laborde
INSTITUCIÓN:	Teléfono: 042596500]	Ext. 210
	E-mail: mandradel@u	ılvr.edu.ec;
	Mg. Luis Almeida Va	rgas
	Teléfono: 04 2596500	Ext. 242
	E-mail: lalmeidava@u	lvr.edu.ec

CERTIFICADO DE ORIGINALIDAD ACADÉMICA

Mg. Ing. Carlos Luis Valero Fajardo

C.I. 0925766461

DECLARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS PATRIMONIALES

Los estudiantes egresados Salazar Rodríguez Miguel Ángel y López Cabrera Diego Alberto, declaramos bajo juramento, que la autoría del presente proyecto de investigación, Rehabilitación de la vía Puerto Pechiche y Cruce a Vinces-Mocache Cantón Pueblo Viejo, Provincia de Los Ríos corresponde totalmente a los suscritos y nos responsabilizamos con los criterios y opiniones científicas que en el mismo se declaran, como producto de la investigación realizada.

De la misma forma, cedemos los derechos patrimoniales y de titularidad a la Universidad Laica VICENTE ROCAFUERTE de Guayaquil, según lo establece la normativa vigente.

Autores

Firma:

Diego Alberto López Cabrera

C.I.0955003199

Firma:

Miguel Ángel Salazar Rodríguez

igni salgan R)

C.I.0927236141

CERTIFICACIÓN DE ACEPTACIÓN DEL TUTOR

En mi calidad de Tutor del Proyecto de Investigación Rehabilitación De La Vía Puerto

Pechiche Y Cruce A Vinces - Mocache Cantón Puebloviejo, Provincia De Los Ríos, designado

por el Consejo Directivo de la Facultad de Ingeniería, Industria y Construcción de la

Universidad Laica VICENTE ROCAFUERTE de Guayaquil.

CERTIFICO:

Haber dirigido, revisado y aprobado en todas sus partes el Proyecto de Investigación

titulado: Rehabilitación De La Vía Puerto Pechiche Y Cruce A Vinces - Mocache Cantón

Puebloviejo, Provincia De Los Ríos, presentado por los estudiantes Salazar Rodríguez Miguel

Ángel y López Cabrera Diego Alberto como requisito previo, para optar al Título de Ingeniero

Civil, encontrándose apto para su sustentación.

Firma:

Mg. Ing. Civil Carlos Luis Valero Fajardo

C.C. 0925766461

vi

AGRADECIMIENTO

Agradezco a Dios por siempre guiarme por el buen camino darme fuerzas para seguir

continuando y juntarme con buenas amistades las cuales velan siempre por mi progreso diario.

Agradezco a mis padres, Cesar Eduardo Salazar Rosero y Ruth Antonieta Rodríguez

Avellán, por darme valores, guiarme por un buen camino, darme consejos y sobre todo estar

conmigo pese cualquier adversidad que diera la vida.

A mi hermana, Martha Betania Salazar Rodríguez, por el amor de hermanos, que me

hace siempre progresar y salir adelante pese cualquier obstáculo que ponga la vida.

A mi compañero de tesis, Diego Alberto López Cabrera, por ser uno de esos pocos

amigos que te pone la vida que ayuda a ser mejor persona y que es incondicional y un gran

amigo.

A mi tutor, Carlos Luis Valero Fajardo, quien compartió conmigo sus conocimiento y

sabiduría siguiendo así los pasos de todos los docentes que con alguna vez compartí el salón

de clases siendo una gran ayuda para mi tesis y guiándome para ser un buen profesional.

DEDICATORIA

Es de gran orgullo poder llegar a la finalización de esta gran etapa de mi vida la cual

me dio una formación académica ideal con grandes valores, agradeciendo siempre primero a

Dios quien me dio siempre fuerzas para continuar y guiándome por el buen camino.

Es de gran orgullo dedicarles a mis padres Cesar Eduardo Salazar Rosero y Ruth

Antonieta Rodríguez Avellán, mi trabajo de finalización de carrera por infundirme siempre

buenas costumbre y valores que me han guiado a la culminación de mi carrera y que me

seguirán guiando por el resto de mi vida.

Salazar Rodríguez Miguel Ángel

vii

AGRADECIMIENTO

Quiero agradecer a mis padres, Julio López y Alexandra Cabrera, que a pesar de todo han estado conmigo desde el primer momento.

A mi mejor amigo, Miguel Salazar, que desde el inicio de la carrera me ha demostrado que es una persona en quien puedo confiar y estoy seguro de que llegaremos a cosas grandes.

DEDICATORIA

Dedico este trabajo a mis padres y a mi hermana Gabriela, que, aunque no se lo mencione, los amo mucho.

A Adri, sin ella a mi lado esta última etapa hubiera sido una de las más difíciles sólo.

A mi querida mascota, que ya no me acompaña en vida, pero que lo llevo en mi memoria y no quisiera dejar pasar la oportunidad de mencionarlo e inmortalizar su nombre para siempre.

Y, por último, a mis mejores amigos, Telmo, Carlos, Bryan, Juan y Miguel. La familia que la universidad me dio.

López Cabrera Diego Alberto

INDICE GENERAL

INTRODUC	CCIÓN1
CAPÍTULO	I
DISEÑO DE	E LA INVESTIGACIÓN2
1.1	Tema2
1.2	Planteamiento del Problema.
1.3	Formulación del Problema.
1.4	Objetivo General.
1.5	Objetivos Específicos.
1.6	Hipótesis2
1.7	Línea de Investigación Institucional/Facultad
CAPÍTULO	II
2 MARC	O TEÓRICO
2.1	Antecedentes
2.2	Marco Conceptual.
2.2.1	Volumen de tránsito
2.2.2	Tránsito Promedio Diario Anual (TPDA)
2.2.3	Conteo vehicular
2.2.4	Factor de ajuste (Fm).
2.2.5	Tráfico generado (TG).
2.2.6	Tráfico asignado (TA)10
2.2.7	Composición de tráfico.
2.2.8	Tráfico futuro.
2.2.9	Diseño geométrico de carreteras.
2.2.10	Alineamiento y curvatura de una vía.

	2.2.11	Topografía del terreno	12
	2.2.12	Pavimento.	13
	2.2.13	Terreno de fundación.	13
	2.2.14	Subrasante	13
	2.2.15	Subbase.	14
	2.2.16	Base	14
	2.2.17	Capa de rodamiento.	14
	2.2.18	Diseño de pavimento	15
	2.2.19	Diseño de mezclas asfálticas por el método Marshall	15
	2.2.20	Granulometría.	15
	2.3	Marco Legal.	17
	2.3.1	Constitución de la República del Ecuador.	17
	2.3.2	Ley Orgánica De Transporte Terrestre Tránsito Y Seguridad Vial	18
	2.3.3	Ley Sistema Nacional De Infraestructura Vial Transporte Terrestre	18
CA	APÍTULO	Ш	20
	METODO	DLOGÍA DE LA INVESTIGACIÓN	20
	3.1	Enfoque de la investigación.	20
	3.2	Alcance de la investigación.	20
	3.3	Técnica e instrumentos para obtener los datos	20
	3.5	Presentación y análisis de resultados.	22
	3.5.1	Topografía	22
	3.5.2	Para el segundo objetivo específico que menciona:	59
	3.5.3	El tercer objetivo específico que indica.	71
4	Propue	sta	92
5	CONC	LUSIONES	93
6	RECO	MENDACIONES	95
7	REFER	ENCIAS BIBLIOGRÁFICAS	96

Índice de tablas

Tabla 1 Línea de Investigación Institucional	4
Tabla 2 Mezclas Cerradas.	16
Tabla 3 Técnicas e Instrumentos	20
Tabla 4 Coordenadas Georreferénciales de la vía Puerto Pechiche, cruce a	Vinces-Mocache.
	22
Tabla 5 Estación 1, día 1 –TPDA.	59
Tabla 6 Estación 1, día 2 –TPDA.	60
Tabla 7 Estación 1, día 3 –TPDA.	61
Tabla 8 Estación 1, día 4 – TPDA.	62
Tabla 9 Estación 1, día 5 – TPDA.	63
Tabla 10 Estación 1, día 6 – TPDA.	64
Tabla 11 Estación 1, día 7 - TPDA.	65
Tabla 12 Conteo Volumétrico en donde indica en valores de porcentaje la cana	tidad de vehículos
que circularon durante el conteo realizado.	66
Tabla 13 Cálculo de factor.	67
Tabla 14 Factor de Ajuste.	67
Tabla 15 Factor Diario.	67
Tabla 16 Trafico Generado.	68
Tabla 17 Trafico Asignado.	68
Tabla 18 Composición de tráfico del tpda.	68
Tabla 19 Trafico Asignado.	68
Tabla 20 Composición de tráfico equivalente.	69
Tabla 21 Tasa de crecimiento vehicular.	69
Tabla 22 Proyeccion a 20 años TPDA	69
Tabla 23 CBR y su clasificación.	72
Tabla 24 Niveles de Confiabilidad	74
Tabla 25 Capas de Pavimento	75
Tabla 26 Porcentaje de agregados para la elaboración de briquetas	78
Tabla 27 Diseño de Concreto Asfaltico por el Método Marshall	88
Tabla 28 Diseño de Concreto Asfaltico por el Método Marshall	89
Tabla 29 Diseño de Concreto Asfaltico por el Método Marshall	90
Tabla 30 Diseño de Concreto Asfaltico por el Método Marshall	90

Tabla 31 Porcentajes para las muestras	91
Tabla 32 Análisis de gráficos	91
Tabla 33 Presupuesto de la Vía Puerto Pechiche Mocache –Cruce a Vinces	92

Índice de Ilustraciones

Ilustración 1 Pavimento de la vía Puerto Pechiche	13
Ilustración 2 Irregularidades en la capa de rodadura.	56
Ilustración 3 Mal estado de la vía.	56
Ilustración 4 – Inicio de la Vía Puerto Pechiche Y Cruce a Vinces Mocache	57
Ilustración 5 Tramo de la vía con carencia de la carpeta asfáltica	57
Ilustración 6 Levantamiento topográfico planimétrico utilizando la estación total	58
Ilustración 7 Lectura de los datos obtenidos en la estación total	58
Ilustración 8 Gráfica de la variación diaria de vehículos	66
Ilustración 9 Valores de diseño recomendados para carreteras de dos carriles y o	aminos
vecinales de construcción.	70
Ilustración 10 Ecuación AASHTO 93.	75
Ilustración 11 Espesores Di de Pavimento capas	75
Ilustración 12 Clasificación de Materiales	77
Ilustración 13 Granulometría – Tamaño Máximo de los Agregados	78
Ilustración 14 Clasificación de los agregados en función de los tamices según la no	rmativa
ASTM C 136	79
Ilustración 15 Peso de los agregados finos y gruesos.	79
Ilustración 16 Calentamiento del cemento asfaltico para el previo análisis	80
Ilustración 17 Calentamiento del cemento asfaltico para el previo análisis	80
Ilustración 18 Colocación de los agregados y el cemento asfaltico	81
Ilustración 19 Mezcla de todos los agregados, junto con el cemento asfaltico	81
Ilustración 20 Resultado final de la mezcla para su posterior compactación	82
Ilustración 21 Compactación de la briqueta utilizando un martillo de 10 lb y a una altu	ıra82
Ilustración 22 Resultado final de la compactación realizada	83
Ilustración 23Peso de las briquetas en seco	83
Ilustración 24 Briquetas sumergidas en el agua	84
Ilustración 25 Peso de la briqueta en el agua	84
Ilustración 26 Lectura del peso de la briqueta en seco	85
Ilustración 27 Baño maría de las briquetas, durante 40 minutos	85
Ilustración 28 Lectura del peso de la briqueta luego de baño maría	86
Ilustración 29 Dispositivo utilizado para realizar las pruebas de estabilidad	86
Ilustración 30 Factor de corrección en función de la altura de las briquetas	87

INDICE DE ANEXOS

8 ANEXOS
Anexo 1 Vía Puerto Pechiche y cruce a Vinces - Mocache, se reconoce la falta de
mantenimiento de la carretera, y se denota en varios tramos con baches, piel de cocodrilo
hundimiento de la capa de rodadura, y carencia de asfalto
Anexo 2 Levantamiento topográfico planímetrico de la vía utilizando la estación total104
Anexo 3 Finalizacion de la carpeta asfáltica debido a la falta de mantenimiento105
Anexo 4 Conteo vehicular manual durante un periodo de doce horas durante siete días
seguidos106
Anexo 5 Conteo vehicular en el término de la vía Puerto Pechiche y cruce a Vinces -
Mocache107
Anexo 6 Inicio de la vía
Anexo 7 Prisma para levantamiento topográfico
Anexo 8 Punto de cambio.
Anexo 9 Plano topográfico de la vía puerto pechiche y cruce a Vinces – Mocache 111
Anexo 10 Proceso de clasificación granulométrica
Anexo 11 Clasificación granulométrica de acuerdo a los números y porcentajes basados
en las normas AASHTO 93113
Anexo 12 Briquetas asfálticas con sus diferentes porcentajes de asfalto114
Anexo 13 Dispositivo de estabilidad

INTRODUCCIÓN

La infraestructura vial es de gran importancia para el desarrollo económico del país. Las carreteras unen las áreas de producción y consumo, por lo que su estado depende en gran medida del nivel de los costos de transporte, lo que a su vez afecta los flujos comerciales. Por lo tanto, la construcción y el mantenimiento de la vía es un tema que necesita más atención.

Las vías de Ecuador tienen un historial de mantenimiento desgaste constante debido a diversos factores climáticos, y su deterioro ha impactado negativamente el desarrollo económico y la producción de Ecuador. Estos problemas generan costos operativos adicionales para todos los usuarios de la red vial, que se manifiestan directamente en el tiempo extra de viaje, e indirectamente perdidos por otros conductores debido al estrés en la red vial, impacto directo de los conductores y pasajeros con una mayor contaminación ambiental. Las personas en los pasillos se comunican, pero a veces poblaciones enteras.

En la Provincia de Los Ríos, en la Vía Puerto Pechiche, no existe un plan específico de protección y mantenimiento para minimizar los daños a la vía y evitar un mayor deterioro. Actualmente la vía se encuentra en estado de abandono, concesionada por el gobierno o empresas privadas que han dado ejemplo para que la vía esté siempre en las mejores condiciones, aumentando así la vida útil de los vehículos y reduciendo la siniestralidad vial. Es fundamental establecer métodos de trabajo para intervenir y proteger la infraestructura vial para garantizar un tránsito cómodo y seguro.

Este proyecto de investigación, que se enfoca en la asistencia técnica para la restauración de Puerto Pechiche Road y el Cruce Vinces, considerará pruebas de suelo para verificar la presencia de diferentes tipos de formaciones para identificar posibles formas de reasociar características relevantes del revestimiento. Se considerará que el terreno soporta completamente la pendiente de la carretera, así como la cantidad de vehículos para el Desarrollo del Volumen de Tráfico Promedio (TPDA) para ver el tipo de vía recomendado para el diseño de dos carriles propuesto por el Ministerio de Transporte. Y Obras Públicas (MTOP).

CAPÍTULO I

DISEÑO DE LA INVESTIGACIÓN

1.1 Tema.

Rehabilitación de la vía Puerto pechiche y cruce a Vinces - Mocache cantón Puebloviejo, provincia de Los Ríos.

1.2 Planteamiento del Problema.

Antiguamente las vías eran utilizadas para el comercio y transporte entre grandes ciudades, así como también para el desplazamiento de civilizaciones a través de ellos y, como producto de la invención humana, dieron como consecuencia el mejoramiento de las vías puesto que la llegada del automóvil, vehículos pesados y transportación publica han dado como resultado pasar de una vía de tierra que soporta un tránsito ligero, como animales de carga y carrozas, a una vía que está compuesta de subrasante, subbase, base y carpeta asfáltica, que está específicamente diseñada para soportar alto tráfico; sea éste de carga pesada o transporte público.

Comunidades, pueblos y ciudades, mientras mayor es su crecimiento poblacional, mayor va a ser su demanda en el ámbito comercial, de transportación pública y privada, lo cual implica una constante mejora de las condiciones de las carreteras, desde caminos vecinales hasta arterias viales, dando como resultado una mejor calidad del asfalto para una vía, y ello implica realizar estudios previos para determinar ancho de vía y espesor de la carpeta asfáltica.

Realmente en Ecuador existen muchas carreteras que se encuentran en constante mantenimiento. Por lo cual es importante destacar que las carreteras tanto Troncales como Transversales se encuentran en estado óptimo para la transportación vehicular. La provincia de Los Ríos cuenta con una red vial considerable, por lo que requiere un gran aporte económico por parte de cada municipalidad para su correcta operatividad y servicio, así como diversas prioridades para sus habitantes.

Las parroquias en el Ecuador se encuentran mayormente pobladas por personas dedicadas a la agricultura, y en su mayoría cuentan con transportación pública. Sin embargo, existe un pequeño grupo de comunidades que carecen de esta y, en consecuencia, los habitantes se movilizan en camiones, chivas, moto taxi o cualquier otro medio de transporte que los ayude

a llegar al cantón más cercano para que los comunique mediante una cooperativa de transporte público.

Esto dará como resultado que cada cierto periodo de tiempo será necesario una rehabilitación de la arteria vial, así como un nuevo estudio que dé como resultado una mejora de la condición vial y esto a su vez mejorará el estilo de vida de los pobladores, y a su vez aumentaría el comercio de los agricultores mediante la venta de su producción y alargará la vida útil de sus vehículos.

Una carretera en óptimas condiciones representa una inversión considerable al Estado, y genera una retribución al mismo, porque el agricultor, el transportista público, el comerciante y personas particulares en general se beneficiarán de vías de primer nivel que aminoran el tiempo de viaje, haciendo más rápida la comunicación y comercialización de bienes, productos y servicios, así como también disminuye el gasto del mantenimiento vehicular, sea este particular o público.

1.3 Formulación del Problema.

¿Cómo afectarán las condiciones actuales de la carretera al flujo de vehículos en movimiento?

1.4 Objetivo General.

Analizar las condiciones de la carretera Puerto Pechiche y cruce a la vía Vinces – Mocache para una correcta rehabilitación.

1.5 Objetivos Específicos.

- Examinar el estado actual de la vía Puerto pechiche y cruce a Vinces Mocache.
- Categorizar el tipo de vía Puerto pechiche y cruce a Vinces Mocache por medio de un tráfico promedio diario anual (TPDA).
- Establecer un diseño de mezcla asfáltica para la vía "Puerto pechiche y cruce a Vinces Mocache", cantón Puebloviejo, provincia de Los Ríos.

1.6 Hipótesis.

La Rehabilitación de dicha carretera mejorará la calidad de vida de los moradores del sector, en base a un levantamiento topográfico, obteniendo las condiciones actuales de la carretera, así como también de un Tráfico Promedio Diario Anual (TPDA) para establecer el tránsito real. Con todos estos datos recopilados se podrá determinar la mejor solución vial de la carretera Puerto pechiche y cruce a Vinces – Mocache.

1.7 Línea de Investigación Institucional/Facultad.

Mencionar la línea de investigación institucional, de la Facultad y la sublínea correspondiente según el problema en estudio.

Tabla 1 Línea de Investigación Institucional.

	LINEA	
	DE INVESTIGACION	
DOMINIO	LINEA	LINEA DE FACULTAD
	INSTITUCIONAL	
Urbanismo y		
ordenamiento		
territorial		
aplicando	Territorio, medio ambiente	
tecnología de la	y materiales innovadores	Territorio
construcción eco-	para la construcción	
amigable, industria		
y desarrollo de		
energías renovables.		

Fuente: (Universidad Laica Vicente Rocafuerte de Guayaquil, 2021).

CAPÍTULO II

2 MARCO TEÓRICO

2.1 Antecedentes.

Se pretende examinar los temas referentes al presente proyecto de titulación, con el propósito de obtener variedad de conocimientos, basados en la experiencia de los distintos autores.

En relación con la variable rehabilitación, se ha analizado lo siguiente:

(Ariana Valero Lozano, 2021) El proyecto denominado "Proceso Constructivo De La Rehabilitación De La Vía Los Arenales – Los Ranchos-La Boca De La Parroquia Crucita Del Cantón Portoviejo" sustentados por la autora Ariana Valentina Valero Lozano previo a la obtención del título Ingeniero Civil, en la Universidad De Guayaquil, en el año 2021, con sede en Ecuador. La autora decreta como objetivo general desarrollar el proceso constructivo para el proyecto de "Rehabilitación De La Vía Los Arenales – Los Ranchos – La Boca De La Parroquia Crucita Del Cantón Portoviejo". A la vez se realizó la programación del proyecto y a su vez el análisis de precios unitarios en los cuales se verán reflejados en mejores resultados para la rehabilitación de la vía, ya que será de gran ayuda a futuro. La autora elaboró los análisis de presupuesto referencial y otros informes en los cuales se han determinado a través de factores los rubros que intervendrán en el desarrollo del proyecto para así brindar una mejor solución para la vía. Conforme con los resultados obtenidos se puede concluir, que es recomendable poder recopilar toda la información necesaria para la correcta rehabilitación de la vía.

La contribución de dicha tesis al presente trabajo de investigación es la de otorgar una referencia de los análisis de precios unitarios, de tal manera que se permita continuar con la línea de investigación planteada. El reunir información pertinente para su adecuada rehabilitación es importante para precisar qué elementos son necesarios y optimizar los recursos destinados.

Siguiendo con la variable rehabilitación.

(Bryan Saldaña y Wyler Taipe , 2018) El trabajo llamado "Rehabilitación y Mejoramiento en vías de bajo volumen de tránsito a nivel tratamiento superficial slurry

sealcanayre- Puerto Palmeras-Ayacucho" sustentados por los autores Bryan Brando Saldaña Yauri y Wyler Taipe Aristegui antes de adquirir el título Ingeniero Civil, en la Universidad de San Martín de Porres de la Escuela Profesional de Ingeniería Civil, en el año 2018, ubicada en Lima, Perú. Los autores identificaron como objetivo general de mejorar la capacidad vial al proponer modificaciones y mejoras al tratamiento superficial de la carretera de bajo tráfico Canayre – Puerto Palmeras, por ser esta una necesidad prioritaria de las ciudades involucradas, con el fin de mejorar y diseñar las obras de este tramo en la comodidad del usuario en la cual se guiarán con normativas. Con base en los resultados obtenidos, concluyeron que es recomendable verificar el estado de los terrenos aptos para la construcción de caminos.

La ayuda de esta tesis a la investigación establece como lograr obtener un flujo vehicular de manera más rápida, a pesar de ser de bajo volumen de tránsito, a fin de mejorar la condición de vida derivados de la rehabilitación; carretera en buen estado que mejora considerablemente la transportación de los productos agrícolas, que será un beneficio importante a la comunidad.

Siguiendo con la variable rehabilitación.

(Julio Gutierrez y Karin Pumayali Camacho, 2018) La investigación titulada "Mejoramiento y Rehabilitación del camino vecinal Tramo: Nogalpamba Cotarma-Piscaya Distrito Pichirhua, Provincia de Abancay, Región Apurimac" sustentados por los autores Julio Cesar Gutiérrez Ipenza y Karin Angélica Pumayali Camacho previo a la obtención del título Ingeniero Civil, en la Universidad Tecnológica de los Andes, en el año 2018, en Abancay-Apurímac en Perú. Los autores manifiestan que su objetivo general es describir los parámetros técnicos, topográficos, geotécnicos e hidrológicos necesarios para posibilitar el diseño geométrico final del mejoramiento y rehabilitación del tramo Nogalpamba – Cotarma – Piscaya, distrito Pichirhua, provincia de Apurímac.

Los autores realizaron la investigación para obtener las características geotécnicas para determinar las características hidrológicas y de drenaje de sus zonas de impacto para la reparación y mejora. Además, indicar el presupuesto total para el diseño geométrico final en la cual se implementará para unir a la comunidad. En base a los resultados obtenidos, proponen el diseño geométrico de la vía, el inventario de la infraestructura vial, las características topográficas y geotécnicas de la vía, el comportamiento del tránsito de los vehículos, además del presupuesto general.

La contribución que genera esta investigación está alineada a la estructuración de un presupuesto que servirá como base para la rehabilitación de la vía "Puerto Pechiche y cruce a Vinces – Mocache" cantón Puebloviejo, provincia de Los Ríos.

En relación con su segunda variable vías.

(Christian Azuero y Carlos Idrovo Pinos, 2018) La investigación titulada "Diseño Geométrico y de Pavimento de la Vía Parculoma – Yabrún, cantón Gualaceo" sustentados por los autores Christian Urgiles Azuero y Carlos Julio Idrovo Pinos, previo a la obtención del título Ingeniero Civil, en la Universidad Católica de Cuenca, en el año 2018, con sede en Ecuador. Los autores establecieron el objetivo general de aplicar la normativa vigente al diseño geométrico y superficial de la vía Parculoma – Yabrún, cantón Gualaceo, provincia del Azuay. Ellos realizaron un conteo de vehículos, estudios topográficos completos y estudios de suelo relacionados del área, seguido de un diseño geométrico combinado con la construcción de pavimentos a fin de optimizar la seguridad de los usuarios viales enfrenten a una situación inesperada, asegurar un diseño optimo, seguro y económico, de acuerdo con las necesidades del equipo y del usuario. De los resultados obtenidos se puede concluir que hace base en lo establecido en el MTOP 2003 Y LA NEVI 12 para el diseño geométrico horizontal, vertical y lateral.

El aporte que brinda la presente investigación es la de replicar un conteo vehicular denominado Tráfico Promedio Diario Anual (TPDA) mediante la contabilización manual de la cantidad de vehículos que transitan por la carretera, así también su clasificación, previo análisis de resultados.

Siguiendo con la variable vías.

(Christian Albán Feijóo y Juan José Avila, 2017)La investigación titulada "Estudio de tráfico, rediseño geométrico y diseño de pavimentos de las vías marginales a los ríos: Yumaza, Gualaquiza, Churuyacu y de la calle Logroño de los caballeros, en la parroquia Gualaquiza del Cantón Gualaquiza, con una longitud de 3.520 km" sustentados por los autores Christian Albán Feijóo y Juan José Ávila Ávila, previo a la obtención del título Ingeniero Civil, en la Universidad del Azuay, en el año 2017, con sede en Ecuador. Los autores mencionan como objetivo general realizar los diseños necesarios a nivel de anteproyecto para la construcción de las vías marginales a los ríos: Yumaza, Gualaquiza, Churuyacu y de la calle Logroño de los caballeros. Los autores realizaron la recopilación de información existente sobre el estudio de las vías, la evaluación de tráfico en el área de influencia media de las vías, el respectivo diseño

de pavimento en la cual será una alternativa más conveniente. De acuerdo con los resultados obtenidos se puede concluir que es recomendable realizar el diseño geométrico, en la cual los análisis de tráfico son en las zonas de influencias de las vías ya que ellas tendrán un funcionamiento óptimo.

Este aporte está relacionado con el numero estructural SN, que se obtendrá mediante la medición del tránsito estimado durante el periodo de diseño, porcentaje de confiabilidad, desviación estándar, módulo de resilencia MR, y la perdida de serviciabilidad se hallará el espesor de la subbase, de la base y de la carpeta asfáltica.

Para concluir con la variable vías.

(Jose Luis Pantoja Galvan, 2019) La investigación titulada "Influencia de la corrección del CBR del terreno de fundación vial en el diseño de pavimentos para el proyecto de conservación vial Santa Rosa tramo dv. Humajalso-Huaytire" sustentado por el autor José Luis Pantoja Galvam previo a la obtención del título Ingeniero Civil, en la Universidad San Ignacio de Loyola, en el año 2019, ubicada en Lima – Perú. El autor establece un objetivo general de evaluar el impacto que afectara el diseño del pavimento y los costos directos que estos implican, ya que no existen factores de protección correctivos para las curvas carga. penetración de los estudios de CBR de laboratorio en la carretera Santa Rosa tramo dv. Humajalso – Huaytire. El autor diseña el tipo de pavimento del proyecto de mantenimiento vial y prepara el presupuesto vial.

En base a los resultados obtenidos, es posible realizar conclusiones que sugieren una optimización y mejor aproximación en el diseño de la estructura del pavimento, se debe considerar la influencia de estos resultados integrados en la conclusión, complementados con el espesor de la capa asfáltica.

El aporte que indica el trabajo esta direccionada al diseño de pavimento, que además permita una lectura adecuada y un análisis completo de los distintos espesores dados en los ensayos de laboratorio que determinen su adecuado uso.

2.2 Marco Conceptual.

2.2.1 Volumen de tránsito

Es el número de vehículos livianos, buses y vehículos pesados que cruzan los carriles dentro de un período de tiempo específico, según lo determina un conteo vehicular conocida como aforo. Dependiendo del número de vehículos, el tráfico puede ser horario, diario, semanal, mensual o anual

La clasificación funcional es el proceso de clasificación de caminos y calles en categorías o sistemas basados en la función del servicio de transporte provisto. (BLAS CALERO, CHAVARRIA CARBALLO, Y ALEMAN, 2019).

2.2.2 Tránsito Promedio Diario Anual (TPDA)

La encuesta de tráfico debe proporcionar información sobre el volumen de tráfico diario anual promedio (TPDA) para cada segmento de carretera probado, puede comprender el comportamiento de tráfico y también puede evaluar el nivel de congestión de este. La demanda aumentará y afectará la estructura del tráfico proyectado.

Las estaciones deberían estar dentro de un trecho de carretera adecuado para que el cálculo de tráfico denote una muestra representativa del cálculo de tráfico en las diferentes áreas del tramo de carretera.

Se debe considerar el trabajo de campo durante al menos siete (7) días (de domingo a sábado). Con base en la información recolectada, se determinarán las proyecciones de tráfico para cada tipo de vehículo, sustentando la referencia de tasas anuales de crecimiento del tráfico. (ROQUE Y ROQUE, 2020).

En función del número de días del periodo establecido, los volúmenes de tránsito promedio diarios se clasifican en:

• Tránsito Promedio Diario Anual (TPDA).

TPDA = TA/365

Tránsito Promedio Diario Mensual (TPDM).

TPDM = TM/30

• Tránsito Promedio Diario Semanal (TPDS).

TPDS = TS/7

Dónde:

TA: Tránsito Anual.

• TM: Tránsito Mensual.

TS: Tránsito Semanal.

2.2.3 Conteo vehicular

El conteo vehicular se conoce como el proceso de medir el número de vehículos que transitan por un determinado segmento de carretera por unidad de tiempo. Las horas de contabilización varían según el método y el uso previsto. El contador mecánico puede contar las 24 horas del día. Las mediciones manuales de las intersecciones deben realizarse durante al menos 12 horas. (BLAS CALERO, CHAVARRIA CARBALLO, Y ALEMAN, 2019)

2.2.4 Factor de ajuste (Fm).

Es un factor de ajuste (Fm) para el transito promedio diario (TPDA), que dependerá del mes en el cual se está realizando el conteo para su respectivo estudio. El factor de ajuste está relacionado con el TPDA sobre el Tráfico Promedio Diario Semanal (TPDS).

2.2.5 Tráfico generado (TG).

Es el que está compuesto por el número de viajes que se han realizado cuando las mejoras hechas se realizan, el volumen del tráfico generado es igual a un porcentaje del tráfico normal que está previsto en el primer año del proyecto, y tiene un porcentaje como máximo del 20%.

2.2.6 Tráfico asignado (TA).

Es la suma del tráfico generado (TG) y la del tráfico promedio diario anual (TPDA) corregido con el factor de ajuste (Fm), que conlleva a la suma de ambos resultados, este mismo sería el estimado del tráfico en el primer año de utilización vial de la carretera.

2.2.7 Composición de tráfico.

Mediante el conteo vehicular asignaremos en diferentes categorías la composición de los números de vehículos livianos, buses y vehículos de carga pesadas el cual dará el promedio de circulación mayor en porcentaje de este tipo de vehículos así mismo se realiza la

composición de tráfico con respecto al tráfico asignado (TA), para una proyección de la vía en el primer año de vida de la carretera.

2.2.8 Tráfico futuro.

Es una tabla de crecimiento vehicular clasificada en livianos, buses y pesados, proyectada a 25 años estipulada por la MTOP (Ministerio de Transporte y Obras Públicas) con la tasa de crecimiento vehicular

"Este aforo se efectuó directamente en la abscisa 0+000, ya que es la entrada principal de esta vía y por donde circula mayormente el tránsito vehicular. La información obtenida en dicho conteo proporciona un porcentaje de los diferentes tipos de vehículos que circulan por el camino existente, la cual es de vital importancia para el diseño de la estructura de pavimento." (BLAS CALERO, CHAVARRIA CARBALLO, Y ALEMAN, 2019).

2.2.9 Diseño geométrico de carreteras.

Consiste en una línea horizontal y otras verticales basadas en las características geométricas actuales, las condiciones topográficas y los volúmenes de tráfico actuales y proyectados durante la fase de diseño. Los criterios de diseño utilizados son los señalados en la Norma Ecuatoriana Vial NEVI 12 (ROQUE Y ROQUE, 2020).

La proyección geométrica de una carretera o de un recorrido horizontal es la proyección de su eje real o espacial sobre el plano horizontal. El eje consta de una serie de intervalos lineales, llamados tangentes, que están conectados por curvas. (ALBÁN FEIJÓO Y AVILA AVILA, 2017).

Es el que nos va a permitir el correcto trazado de la vía. Las condiciones principales para conformar una carretera son el trafico promedio diario anual (TPDA), topografía del terreno, estudios de suelo, factores sociales y urbanísticos.

2.2.10 Alineamiento y curvatura de una vía.

Se debe considerar dos casos para el diseño de curva horizontal los cuales son:

• Tangente seguida por la curvatura.

Esta es cuando la fuerza centrifuga actúa en contra al momento de entrar y circular por curva de los vehículos.

• Alineamiento compuesto de tangente y curva horizontal y vertical.

Estos elementos de diseño, influenciados por las fuerzas radiales y centrífugas, determinan la lentitud con la que los vehículos pesados suben y bajan a altas velocidades. Dar forma al tráfico teniendo en cuenta la seguridad y la parte económica. El diseño introduce métodos para compensar horizontalmente las restricciones operativas, como el radio de curva mínimo o el arco máximo, como la fricción tangencial a la curva y el tamaño del paso, el máximo de gradiente oscuro o el máximo admisible.

2.2.11 Topografía del terreno.

(Julio Gutierrez y Karin Pumayali Camacho, 2018) El recorrido por vía terrestre de la carretera, con el apoyo de varios equipos de medición. Al ser una vía que requiere una rehabilitación integral, es requerido conocer todo el tramo. Por ende, se utilizaron equipos que permitan la identificación del terreno; tales como la brújula, el GPS, el prisma, la estación total y una cinta métrica.

Esta fase será para el reconocimiento del ancho de vía con su longitud total, para en fases posteriores determinar puntos definitorios en la carretera, tipo de suelo, reconocimiento de las zonas por donde atraviesa, su tiempo de recorrido, el trayecto a recorrer, etc.

El flujo de tráfico y velocidad de diseño, así como tipos de vehículos y usuarios viales que necesitan rutas según el tipo y la clasificación de la carretera se obtiene tipo de vía y su jerarquía. La topografía permite ubicar un camino, indicando la pendiente, el horizonte, la distancia de visibilidad y el grado de costado de un segmento de camino

La clasificación de la topografía según su punto de vista está clasificada en cuatro categorías, las cuales son:

- a) Terreno plano: Esta es una línea con una pendiente horizontal normal de menos del 5%. Requiere un movimiento mínimo del suelo en la construcción de carreteras y no causa dificultad en el seguimiento y la conformación y una pendiente vertical generalmente del 3%.
- b) Terreno ondulado: La característica principal es la pendiente horizontal del 6% al 12%. Se requiere un relleno moderado, que permitirá un recorrido más o menos recto sin mucha dificultad para ubicarse horizontalmente, con pendientes verticales típicamente entre 3% y 6%.
- c) Terreno montañoso: Estas pendientes tienen como características ser del 13% al 40%. Exige mayor movimiento de tierras al momento de la construcción, con pendientes y estructuras para salvar el terreno montañoso, esto representa mayor dificultad en el trazado y explanación, estas pendientes de la vía serán del 6% al 8% y serán las más comunes.

d) Terreno escarpado: Estas pendientes suelen pasar del 40% con mucha frecuencia, Estas requerirán el mayor movimiento de tierras y la exigencia al trazado y explanación serán más dificultosas con alineamientos definidos con divisorias de aguas. Entonces, tendremos pendientes mayores al 8% y para evitarlos el diseñador tendrá que visualizar la construcción de puentes, túneles y/o estructuras para salvar lo escarpado del terreno. (MTOP, 2013)

2.2.12 Pavimento.

Se refiere a la estructura soportada sobre el suelo de fundación, de terracería o subrasante mejorada compuesta por distintas capas; la subbase (capa inferior), base (capa intermedia), capa de rodadura (concreto asfáltico) y sello.

Ilustración 1 **Pavimento de la vía Puerto Pechiche**. **Elaborado por: López y Salazar (2022).**

2.2.13 Terreno de fundación.

Suelo que sirve de soporte al pavimento. En su acabado – compactado, debe cumplir con las secciones transversales y pendientes especificadas para cada proyecto. Los espesores que componen las distintas capas de pavimento son función de la capacidad de soporte del terraplén. El Módulo Resilente o módulo elástico dinámico (M.R.), indica la capacidad de soporte.

Si el suelo que compone el terreno de fundación es de mala calidad, es necesario colocar un espesor de material pétreo seleccionado como subbase, o capas de geomallas las cuales disipan las tensiones que son producidas por el pase de los vehículos que son transmitidas al subsuelo.

2.2.14 Subrasante

Esta tiene como referencia al terreno de fundación, la cual puede ser o no mejorada. En viabilidad su cota es función hidrológica, que conforman desniveles. En las calicatas se aprecian materiales que se ordenan como material de mejoramiento.

2.2.15 Subbase.

Es el material pétreo preseleccionado que va encima de la subrasante. La función de esta capa es de desaguar, vigilar o descartar los cambios de dimensión (expansión - contracción), que puedan mostrar los suelos que son parte de la subrasante. La ascensión capilar del agua que puede estar llenando la subrasante la cual se ve reflejado en el suelo limoso.

Según especificaciones del MTOP. 2002. El límite de liquidez de la parte que pasa por el tamiz No 40 debe ser inferior al 25%. El índice de plasticidad es inferior al 6%. Deberá cumplir con las especificaciones de tamaño de partícula. Enfatice que el tamaño máximo del agregado debe ser de tres pulgadas o menos. La tasa de desgaste no debe ser superior al 50%. El valor de CBR será igual o superior al 30%.

2.2.16 Base

Se realizará con material pétreo seleccionado o se colocará sobre el suelo cemento una mezcla de tierra-cemento, mezcla bituminosa o piedra triturada.

Su función principal es absorber y distribuir las cargas generadas por los compuestos sobre la subbase. La especificación MTOP especifica que la porción que pasa a través del tamiz 40 debe ser del 25% o menos; El índice de plasticidad es inferior al 6%. Tenga en cuenta que el tamaño máximo del agregado debe ser de dos pulgadas (cinco centímetros) o menos. La tasa de desgaste no debe ser superior al 50%. El valor de CBR será igual o superior al 80%.

2.2.17 Capa de rodamiento.

Consiste en un pavimento rígido, flexible o articulado, pavimentado sobre el contra piso. Su función principal es proteger el sustrato deduciendo la impermeabilidad de su superficie, evitando la saturación, pérdida de capacidad portante y posterior falla. Evita el desgaste por descomposición de los materiales que componen el suelo, debido al contacto del neumático con diversos compuestos.

La literatura de la industria indica que "las fallas de los pavimentos plásticos (formación de hoyos, grietas, etc.), alrededor del 32%, por espesor insuficiente de la capa de soporte, equivalen al 14% del espesor del papel tapiz. 45% por ausencia de espesor del subsuelo y sólo el 9% por la ausencia del suelo". El espesor mínimo según norma ASSHTO debe ser de 10,0 cm. Todas las esquinas con grava que contengan mezcla asfáltica deben cubrirse. Si su espesor es igual o superior a tres pulgadas (7,5 cm), lo que contribuye al soporte y distribución de las fuerzas generadas por el paso de los vehículos, entonces su espesor es, por tanto, una función del tráfico esperado a lo largo de la vía.

2.2.18 Diseño de pavimento.

De acuerdo con la circulación interna del proyecto, se inicia con el muestreo de suelo de la roca madre existente y las capas de pavimento, representando los diferentes horizontes de terreno encontrados hasta una profundidad de 2,40 para la construcción de carreteras, el espesor de la capa de pavimentación existente debe considerarse como una subcapa mejorada. El CBR de diseño se determinará entonces considerando el CBR obtenido en la primera capa de suelo encontrada.

2.2.19 Diseño de mezclas asfálticas por el método Marshall.

El método fue desarrollado por Bruce Marshall, quien a su vez perfeccionó el procedimiento a través de una extensa investigación y estudios relacionados con la prueba Marshall.

Este método Marshall original solo es adecuado para mezclas asfálticas en caliente, con agregados de hasta 25 mm o 1 pulgada de tamaño. Este método fue desarrollado para agregados mayores de 38 mm o 1,5 pulgadas, donde se utiliza para diseñar y probar mezclas asfálticas en caliente en el laboratorio. Dado que las pruebas de estabilidad son de naturaleza experimental, la alteración de los procedimientos estándar hace que los resultados sean irrelevantes para evaluar su comportamiento en el campo.

El método Marshall utiliza muestras con una altura de 64 mm y un diámetro de 102 mm. Se prepara de acuerdo con la norma ASTM D1559 utilizando procesos especiales para calentar, mezclar y compactar mezclas asfálticas y agregados

El método Marshall, utiliza especímenes de prueba de 64mm de altura y 102 mm de diámetro. En la cual se prepara usando un procedimiento específico para calentar, mezclar y compactar mezclas de asfalto y agregado por la norma ASTM D1559.

Los aspectos clave del método de diseño de mezclas Marshall son el análisis de densidad y porosidad y los estudios de estabilidad y flujo de muestras concentradas. (Garcia Rojas Jean Carlo y Inga Lopez Ronny David, 2020).

2.2.20 Granulometría.

En esta metodología, se utiliza una gráfica semi logarítmica en la cual ayuda a definir la granulometría permitida, y se encuentran los porcentajes de material que para cierta malla y en la abscisa las aberturas de las mallas en mm, con sus gráficos de forma logarítmica.

La selección de una curva granulométrica para el diseño de una mezcla asfáltica cerrada o densa, está en función de dos parámetros:

• El tamaño máximo nominal del agregado y el de las líneas de control.

Las líneas de control son puntos de paso obligado para la curva granulométrica, según se muestra en la tabla en la cual presenta los tamaños máximos nominales más utilizados, así como sus líneas de control de acuerdo con la ASTM D3515.

Tabla 2 Mezclas Cerradas.

				N	lezclas cerrada	as			
Abertura de malla	Tamaño máximo nominal del agregado								
	2in (50 mm)	1 ½ in (37,5 mm)	1 in (25,0 mm)	¾ in (19Д mm)	½ in (12,5 mm)	3/8 in (9,5 mm)	No. 4 (4,75 mm)	No. 8 (2,36 mm)	No. 16 (1,18 mm)
		Gradua	aciones para n	nezclas de agr	egados (grues	o, fino y filler			
2 ½ in. (63mm)	100	(322	9855	1	1923	(20)	922	(552	2000
2 in. (50mm)	90 – 100	100	5304	32223	222	940)	999	900	22222
1 ½ (37,5mm)	3440	90 – 100	100	(4)	()	1000	344	0	(4.2)
1 in. (25,0 mm)	60 - 80		90 – 100	100		***	Nee	944	(275)
¾ in. (19 Дmm)	(255)	56 – 80	300	90 – 100	100	5376	(0.55)	1000	1,000
½ in. (12,5mm)	35 - 65		56 - 80	0.555.0	90 - 100	100		1000	05550
3/8 in. (9,5mm)	1000	10.0	300	56 - 80		90 - 100	100	10.0	20.00
No. 4 (4,75mm)	17 – 47	23-53	29 - 59	35 - 65	44 – 74	55 - 85	80 - 100	8555	100
No. 8 (2,36mm)	10 - 36	15-41	19 – 45	23 - 49	28 - 58	32 - 67	65 – 100	8922	95 – 100
No. 16 (1,18mm)	222		944				40 - 80	3	85 – 100
No. 30 (600 µm)	***		2.555			***	35-65		70-95
No. 50 (300 µm)	3 – 15	4 – 16	5 – 17	5 – 19	5 – 21	7-23	7 – 40		45-75
No. 100 (150 µm)				0.555.0		***	3-20		20 – 40
No. 200 (75 µm)	0 - 5	0 - 6	1-7	2-8	2 - 10	2 - 10	2-10	1022	9-20
	Asfalto, Porcentaje con respecto al peso total de la mezcla								
	2-7	3-8	3-9	4 - 10	4 - 11	5 - 12	6-12	7 - 12	8-12

Fuente: (Esia Zacatenco, 2015)

2.3 Marco Legal.

2.3.1 Constitución de la República del Ecuador.

Art. 415.- El Estado central y los gobiernos autónomos descentralizados adoptarán políticas integrales y participativas de ordenamiento territorial urbano y de uso del suelo, que permitan regular el crecimiento urbano, el manejo de la fauna urbana e incentiven el establecimiento de zonas verdes. Los gobiernos autónomos descentralizados desarrollarán programas de uso racional del agua, y de reducción reciclaje y tratamiento adecuado de desechos sólidos y líquidos. Se incentivará y facilitará el transporte terrestre no motorizado, en especial mediante el establecimiento de ciclo vías. (Constitución de la Republica del Ecuador, 2008)

El Art.415 menciona que, el estado y los gobiernos autónomos descentralizados regularán el crecimiento urbano, lo que indica que dentro de lo mencionado esta indirectamente relacionado con la creación, mantenimiento o rehabilitación que servirá para el progreso de los ecuatorianos.

Art.314.- El Estado será responsable de la provisión de los servicios públicos de agua potable y de riego, saneamiento, energía eléctrica, telecomunicaciones, vialidad, infraestructuras portuarias y aeroportuarias, y los demás que determine la ley. (Constitución de la Republica del Ecuador, 2008)

El estado garantizará que los servicios públicos y su provisión respondan a los principios de obligatoriedad, generalidad, uniformidad, eficiencia, responsabilidad, universalidad, accesibilidad, regularidad, continuidad y calidad. El estado dispondrá que los precios y tarifas de los servicios públicos sean equitativos y establecerá su control y regulación.

El Art 314 indica que, en materia de vialidad se realizará los respectivos estudios que conlleven a brindar una solución idónea para cada vía o carretera del País, según sea el caso otorgar concesiones al sector público o privado del que se dispondrá los precios y tarifas en estos sectores en la cual sea equitativo y se realice sus respectivos controles. (Constitución de la Republica del Ecuador, 2008)

Art.337.-El estado promoverá el desarrollo de infraestructura para el acopio, transformación, transporte y comercialización de productos para la satisfacción de las necesidades básicas internas, así como para asegurar la participación de la economía

ecuatoriana en el contexto regional y mundial a partir de una visión estratégica. (Constitución de la Republica del Ecuador, 2008)

El art 337 expresa que para el progreso de la economía ecuatoriana es de gran importancia que las vías de comunicación estén en un estado óptimo de servicio para los usuarios viales, en la cual brinde las condiciones necesarias para que los productos comercializados tengan una valorización justa.

2.3.2 Ley Orgánica De Transporte Terrestre Tránsito Y Seguridad Vial.

Art. 4.- Es obligación del Estado garantizar el derecho de las personas a ser educadas y capacitadas en materia de tránsito y seguridad vial, en su propia lengua y ámbito cultural. Para el efecto, el Ministerio del Sector de la Educación en coordinación con la Agencia Nacional de Regulación y Control del Transporte Terrestre, Tránsito y Seguridad Vial, desarrollarán los programas educativos en temas relacionados con la prevención y seguridad vial, principios, disposiciones y normas fundamentales que regulan el tránsito, su señalización considerando la realidad lingüística de las comunidades, pueblos y nacionalidades, el uso de las vías públicas, de los medios de transporte terrestre y dispondrán su implementación obligatoria en todos los establecimientos de educación, públicos y privados del país. (LEY ORGÁNICA DE TRANSPORTE TERRESTRE TRÁNSITO Y SEGURIDAD VIAL, 2021)

2.3.3 Ley Sistema Nacional De Infraestructura Vial Transporte Terrestre.

- Art. 15.- Atribuciones y Deberes. Corresponde al ministerio rector:
- 4. Administrar la red vial estatal realizando las acciones de planificación, diseño, construcción, rehabilitación, señalización, conservación, mantenimiento, operación y financiamiento, considerando el mínimo impacto ambiental. (LEY SISTEMA NACIONAL DE INFRAESTRUCTURA VIAL TRANSPORTE TERRESTRE, 2017)
- 5. Declarar de utilidad pública con fines de expropiación y ocupación inmediata los inmuebles que se requieran para la apertura del trazado, construcción, ampliación, rectificación u otros, para el desarrollo de la infraestructura del sistema vial estatal, de conformidad con las disposiciones constitucionales, legales y reglamentarias. (LEY SISTEMA NACIONAL DE INFRAESTRUCTURA VIAL TRANSPORTE TERRESTRE, 2017)

Art. 17.- Deberes y atribuciones. Son deberes y atribuciones de los gobiernos autónomos descentralizados regionales, provinciales y municipales, en el ámbito de su competencia:

1. Elaborar e implementar el Plan Sectorial de Infraestructura del Transporte Terrestre Cantonal, Provincial o Regional y el Plan Estratégico de Movilidad Cantonal, Provincial o Regional de su respectiva circunscripción territorial, el mismo que será un insumo de su Plan de Desarrollo y Ordenamiento Territorial. (LEY SISTEMA NACIONAL DE INFRAESTRUCTURA VIAL TRANSPORTE TERRESTRE, 2017)

2. Administrar la red vial de su jurisdicción realizando las acciones de planificación, diseño, construcción, rehabilitación, señalización, conservación, mantenimiento, operación y financiamiento, considerando el mínimo impacto ambiental. (LEY SISTEMA NACIONAL DE INFRAESTRUCTURA VIAL TRANSPORTE TERRESTRE, 2017)

• Normativas para el proyecto de investigación.

NEVI12 Volumen 2A

NEVI12 Volumen 2B

CAPÍTULO III

METODOLOGÍA DE LA INVESTIGACIÓN

3.1 Enfoque de la investigación.

Según (Roberto Hernandez, Carlos Fernandez, Pilar Batista, 2014); la investigación tiene un enfoque cuantitativo en la cual usa la recopilación de datos para probar hipótesis basado en la medición digital y análisis estadístico para crear patrones de comportamiento y pruebas teóricas. Dado que la investigación está basada en la recolección de datos, tanto en el TPDA, como en método Marshall, se ocupa una serie de muestras en la cual se puede obtener el resultado óptimo para la posterior aplicación de resultados y así garantizar el trabajo.

3.2 Alcance de la investigación.

El alcance de la investigación es exploratorio, se pretende integrar varios estudios de los distintos procesos que conlleva ejecutar desde el TPDA, topografía para identificar la vía correspondiente al deterioro del nivel de servicio de la vía que presenta. Y a la vez, sus respectivos ensayos de laboratorio, los cuales están direccionados a la obtención de una correcta dosificación de la mezcla asfáltica.

3.3 Técnica e instrumentos para obtener los datos.

Tabla 3 Técnicas e Instrumentos.

Técnica	Instrumentos
	Estación total
Levantamiento topográfico	Prisma
	Navegador GPS
	Cinta métrica
Ensayos de laboratorio	Metodología Marshall para diseño de asfalto AASHTO 93
Experimento	Prueba de rotura de briquetas de mezcla asfáltica

Elaborado por: López y Salazar (2022).

3.4 Población y Muestra.

3.4.1 Población.

La población está conformada por una red vial la cuales dan a conocer este canto de la provincia de los ríos, es comunicado por la vía E25 que conecta pueblo viejo, pasando tres bocas y cadial hasta llegar a la parroquia puerto pechiche y teniendo así una extensión de 32km.

3.4.2 Población en estudio.

Esta es la vía actual que se está realizando el estudio, la cual tiene una extensión de 9.9 km iniciando desde puerto pechiche y culminando en el cruce Vinces Mocache.

3.4.3 Tipo de muestreo.

Es un muestreo no probabilístico en el cual daremos a conocer la necesidad de una rehabilitación vial puerto pechiche cruce a Vinces – Mocache, brindando a la carretera más años de vida útil y mejorando las condiciones de vida en beneficio de la población que vive a sus alrededores.

3.4.4 Característica de la muestra acorde a la variable de estudio.

Se realizará a cabo el muestro por conveniencia, este realizaremos ensayos de laboratorios para determinar así la mejor composición asfáltica de la carretera con una solución factible al estudio llevado a cabo.

3.4.5 Tamaño de la muestra.

Se produjeron veintiuno muestras de briquetas de asfalto usando diferentes porcentajes que van desde 4% a 7% de composición de asfalto, pero por razones económicas, el número de muestras para determinar la confianza estadística es de 32, 32 muestras no se pudieron realizar por razones económicas relacionadas con los costos de investigación.

3.5 Presentación y análisis de resultados.

3.5.1 El primer objetivo específico indica:

Examinar el estado actual de la vía Puerto pechiche y cruce a Vinces – Mocache.

3.5.1 Topografía.

Para realizar la topografía del terreno se utiliza como herramienta de trabajo un GPS, para obtener las coordenadas WGS84, las cuales se ingresa para calar la estación total y encerar en un norte por medio de la utilización de una brújula de mano. Se reconoce que la vía tiene un ancho aproximado de 7 metros con una longitud de 9.9 kilómetros, y que en todo el trayecto de la vía se ubican las casas del sector a más de 25 metros de retiro, el terreno es ondulado puesto que tiene pendientes transversales aproximadas entre 6% y el 12%. Las casas en el sitio se encuentran en promedio de más de 25 metros alejadas de la vía. En la cual se realizó evidencias fotográficas de la zona donde se efectuó la topografía, con vistas a la vía de la zona o dañadas los cuales son baches y el estado actual de la vía que en época de invierno se deteriora más.

Se adjunta plano topográfico de la zona con evidencia del levantamiento realizado, y fotos del estado actual de la vía.

Tabla 4 Coordenadas Georreferénciales de la vía Puerto Pechiche, cruce a Vinces-Mocache.

Puntos	ESTE	NORTE
1	658502.8340	9848194.0960
2	658509.6940	9848210.7590
3	658489.2280	9848185.4620
4	658491.8560	9848197.6590
5	658532.4780	9848217.2930
6	658532.3250	9848226.7580
7	658520.7080	9848207.9660
8	658522.1450	9848219.9680
9	658439.0640	9848147.4180
10	658441.2360	9848160.0890
11	658421.2120	9848135.4480

12	658424.7060	9848149.0980
13	658466.5650	9848168.6430
14	658472.3660	9848183.9570
15	658456.0450	9848158.7390
16	658454.1880	9848170.4240
17	658613.4230	9848277.0780
18	658616.1840	9848289.9740
19	658597.7680	9848264.8210
20	658601.9990	9848279.4820
21	658642.0530	9848299.5790
22	658640.9120	9848310.2770
23	658628.2890	9848286.6840
24	658630.9330	9848301.5450
25	658559.8650	9848236.1480
26	658562.8030	9848249.8590
27	658545.7580	9848226.3990
28	658545.3250	9848239.0350
29	658588.5540	9848258.6910
30	658590.0130	9848270.6380
31	658578.1870	9848247.6340
32	658579.5660	9848261.5610
33	658253.5530	9848012.5490
34	658255.2170	9848025.1140
35	658238.2720	9848001.4050
36	658239.4260	9848013.9350
37	658288.4090	9848036.9120
38	658290.6690	9848050.0690
39	658273.4890	9848024.2530
40	658275.4640	9848038.8630
41	658191.7130	9847966.9330
42	658193.6620	9847979.8070
43	658179.4320	9847960.5040

44	658179.0550	9847969.7670
45	658216.4840	9847985.6170
46	658220.1830	9847996.1170
47	658202.1620	9847975.2740
48	658204.4160	9847987.8480
49	658385.7680	9848107.1130
50	658383.2430	9848116.8920
51	658373.6740	9848097.4660
52	658365.8340	9848106.0680
53	658412.0830	9848129.3050
54	658410.9540	9848138.1070
55	658400.1720	9848116.4150
56	658400.6530	9848130.4800
57	658318.4540	9848059.5060
58	658322.7880	9848074.0620
59	658303.6130	9848048.7060
60	658304.1260	9848062.4730
61	658358.3030	9848088.7520
62	658360.8440	9848101.6750
63	658341.6130	9848074.3690
64	658345.9740	9848090.6980
65	658652.6970	9848307.4370
66	658939.7069	9848510.2766
67	658933.1853	9848525.6263
68	658923.1552	9848498.7585
69	658920.1458	9848516.7868
70	658962.5148	9848530.9793
71	658846.1429	9848457.2975
72	658945.8002	9848519.3287
73	658947.3770	9848537.5917
74	658872.4968	9848455.1901
75	658868.9859	9848475.2216

76	658852.9357	9848448.1792
77	658852.9357	9848467.2090
78	658908.6098	9848482.2326
79	658902.5909	9848499.2593
80	658887.5439	9848468.7114
81	658886.5408	9848488.2420
82	659025.6684	9848598.0047
83	659038.2833	9848590.4476
84	659014.5836	9848589.6600
85	659025.3063	9848582.4178
86	659053.1057	9848622.2504
87	659068.2435	9848611.5445
88	659041.1216	9848609.0254
89	659048.3751	9848598.9493
90	658976.4238	9848558.4870
91	658989.3540	9848550.3001
92	658974.5315	9848541.1686
93	658962.5475	9848548.7257
94	659001.9688	9848581.7880
95	659013.3222	9848571.3970
96	658988.0925	9848569.5077
97	659003.2304	9848560.0614
98	658708.5910	9848358.4230
99	658721.4370	9848357.7400
100	658696.4950	9848350.8160
101	658706.1350	9848347.0820
102	658732.4720	9848376.8220
103	658742.8940	9848372.9890
104	658719.9370	9848368.8880
105	658735.1860	9848365.9010
106	658664.5930	9848326.9160
107	658677.0180	9848327.0920

108	658653.8630	9848317.7790
109	658666.5590	9848316.8450
110	658685.4960	9848342.6580
111	658697.3370	9848340.5540
112	658680.6360	9848337.1100
113	658688.3850	9848333.2630
114	658795.0360	9848425.9390
115	658805.5740	9848422.8600
116	658783.2430	9848417.8840
117	658797.6380	9848414.2560
118	658820.3420	9848442.7420
119	658832.8731	9848451.1839
120	658806.0320	9848435.7780
121	658821.4560	9848431.5030
122	658748.7850	9848391.6360
123	658759.9680	9848387.6830
124	658745.3660	9848387.0540
125	658751.8190	9848380.2860
126	658773.2200	9848408.4050
127	658783.9790	9848404.1220
128	658760.3420	9848400.8970
129	658772.9530	9848395.9640
130	658415.6850	9846994.7830
131	658416.2520	9847010.9140
132	658429.0240	9846979.8890
133	658424.6770	9847001.1920
134	658400.0310	9847019.1790
135	658401.4040	9847031.5100
136	658408.5890	9847007.4180
137	658410.3800	9847018.2540
138	658463.5610	9846919.8720
139	658445.7020	9846942.3350

140	658465.8930	9846889.2720
141	658457.4780	9846917.0290
142	658442.0900	9846971.9310
143	658437.1120	9846981.3320
144	658455.3970	9846943.5610
145	658435.3280	9846969.1030
146	658344.8620	9847101.0070
147	658333.1420	9847103.1520
148	658354.5920	9847090.0560
149	658342.6800	9847091.1420
150	658324.5420	9847125.0690
151	658314.9880	9847126.0990
152	658335.3800	9847114.3690
153	658323.0840	9847114.6260
154	658377.9900	9847046.8890
155	658382.1910	9847056.6530
156	658391.3150	9847031.8700
157	658389.7220	9847045.2730
158	658363.1930	9847078.1760
159	658354.1240	9847078.2510
160	658371.9670	9847068.4900
161	658361.9760	9847067.3210
162	658465.5830	9846585.8430
163	658465.1450	9846593.6850
164	660802.0400	9849915.9200
165	658456.2510	9846581.7210
166	658459.5490	9846639.3220
167	658471.6900	9846642.8580
168	658457.1320	9846604.5480
169	658467.8070	9846618.7530
170	658490.6630	9846526.5610
171	658477.5120	9846548.7760

172	658495.7740	9846511.4930
173	658514.9520	9846494.2050
174	657908.2800	9847630.5400
175	658015.8800	9847842.8200
176	658467.4810	9846561.2390
177	658444.2200	9846959.5400
178	658478.7940	9846748.0230
179	658486.2490	9846748.2850
180	658473.4020	9846713.9750
181	658483.3810	9846720.7140
182	658472.6100	9846860.0820
183	658479.6020	9846861.8880
184	658481.6830	9846794.2810
185	658481.0070	9846825.2380
186	658466.0550	9846669.5610
187	658475.0410	9846673.0880
188	658462.1120	9846654.3230
189	658473.1730	9846656.4390
190	658469.5950	9846697.0330
191	658479.4190	9846703.7690
192	658467.5370	9846681.4790
193	658476.5580	9846686.8820
194	658317.1720	9847137.2090
195	657954.1410	9847749.6960
196	657949.4730	9847772.2790
197	657942.0730	9847711.2190
198	657936.5720	9847734.4250
199	657999.1780	9847818.5220
200	658002.6620	9847834.7990
201	657975.6000	9847790.8010
202	657980.3220	9847812.9550
203	657935.5320	9847588.1590

204	657922.8850	9847593.5670
205	657946.3130	9847573.9520
206	657929.9120	9847579.4770
207	657922.6240	9847651.7130
208	657917.7260	9847681.4050
209	657921.1010	9847621.8630
210	657908.7320	9847640.8780
211	658123.2920	9847916.0590
212	658125.0810	9847929.5590
213	658100.5520	9847896.7790
214	658104.0630	9847913.0630
215	658159.5270	9847941.8420
216	658161.3450	9847954.6190
217	658140.8170	9847929.4980
218	658142.4430	9847943.6080
219	658041.2720	9847855.6030
220	658046.4820	9847869.0970
221	658019.3020	9847835.9290
222	658027.1630	9847852.7090
223	658076.0220	9847883.0320
224	658082.6130	9847897.5360
225	658060.2680	9847868.6730
226	658062.9900	9847882.3190
227	658214.2830	9847243.1220
228	658211.4970	9847262.8330
229	658241.3460	9847212.6230
230	658239.2630	9847233.5820
231	658173.9910	9847293.6960
232	658172.0190	9847317.3600
233	658192.8760	9847266.9020
234	658192.7820	9847288.5300
235	658295.1620	9847151.6480

236	658289.9340	9847169.9660
237	658304.7360	9847139.1340
238	658305.2830	9847150.2670
239	658261.1620	9847190.1020
240	658260.2020	9847207.9820
241	658274.0620	9847173.1550
242	658276.9210	9847187.3640
243	658039.9830	9847451.3790
244	658035.8960	9847471.1920
245	658059.4820	9847423.7130
246	658061.5470	9847446.7200
247	657986.1620	9847509.4960
248	657980.5630	9847537.2200
249	658015.4910	9847481.6930
250	658013.0920	9847501.5170
251	658119.7310	9847356.3520
252	658121.0320	9847371.3270
253	658148.4520	9847324.6070
254	658142.1130	9847345.4020
255	658084.8730	9847399.4020
256	658082.5700	9847417.3820
257	658104.2560	9847375.1690
258	658104.6420	9847389.7980
259	659070.4511	9848633.2711
260	660274.1420	9849513.2653
261	660273.1003	9849534.7598
262	660263.3779	9849499.0512
263	660264.4196	9849517.7722
264	660296.7117	9849530.5996
265	660303.6562	9849556.9477
266	660285.6004	9849524.0126
267	660285.9477	9849543.7736

268	660217.0622	9849468.6380
269	660218.1601	9849496.5893
270	660202.7904	9849450.5519
271	660204.4371	9849476.3109
272	660248.0444	9849487.5047
273	660248.7944	9849513.9587
274	660229.1385	9849480.6954
275	660234.8703	9849505.9197
276	660372.8664	9849590.8957
277	660364.2786	9849601.1850
278	660358.5534	9849581.7496
279	660351.6830	9849592.0389
280	660400.9200	9849616.6191
281	660392.9047	9849625.1935
282	660388.3245	9849604.0432
283	660377.4466	9849613.7609
284	660327.9621	9849555.2143
285	660325.5315	9849576.3620
286	660312.6841	9849543.7736
287	660314.4202	9849567.6949
288	660345.9578	9849570.8886
289	660334.5074	9849584.0361
290	660339.0733	9849561.1079
291	660797.7778	9849925.6160
292	660020.9952	9849308.3528
293	660030.3268	9849335.2079
294	660009.4678	9849297.3915
295	660014.4081	9849319.3141
296	660053.9304	9849333.5637
297	660059.9685	9849357.1305
298	660040.2074	9849319.3141
299	660048.4412	9849346.7173

300	659939.7550	9849268.8922
301	659969.9456	9849265.0557
302	659945.6070	9849242.0395
303	659957.8694	9849252.9983
304	659990.8046	9849278.2093
305	659997.9406	9849309.4489
306	659961.7119	9849280.4015
307	659981.4730	9849294.6512
308	660152.2897	9849406.7068
309	660149.5451	9849438.4945
310	660129.2351	9849394.6494
311	660130.3329	9849419.3122
312	660192.3609	9849434.6580
313	660187.9695	9849459.8690
314	660166.0127	9849420.9564
315	660170.9530	9849451.1000
316	660083.5721	9849357.1305
317	660085.2188	9849381.2453
318	660072.0447	9849348.9095
319	660065.4577	9849375.2166
320	660114.8605	9849385.0818
321	660118.8056	9849406.7068
322	660101.6865	9849366.9957
323	660102.7842	9849394.3989
324	660415.8057	9849625.7651
325	660673.6249	9849841.7607
326	660691.0085	9849840.6036
327	660662.0359	9849833.6610
328	660677.1016	9849830.7683
329	660698.5413	9849857.9601
330	660712.4482	9849855.6459
331	660686.9523	9849851.5960

332	660701.4386	9849848.1247
333	660624.8356	9849804.0102
334	660643.4935	9849802.9980
335	660608.6110	9849797.0676
336	660638.1630	9849794.7534
337	660649.2879	9849822.6686
338	660666.0921	9849820.9330
339	660638.8578	9849815.1475
340	660655.6619	9849808.7835
341	660773.9387	9849896.9077
342	660774.6674	9849913.2775
343	660764.4658	9849891.4511
344	660768.4736	9849903.4556
345	660793.6132	9849910.0035
346	660763.0084	9849905.2745
347	660783.0472	9849904.9107
348	660785.2333	9849917.6428
349	660719.9811	9849878.2092
350	660728.7270	9849869.9015
351	660711.2893	9849867.7954
352	660723.4577	9849862.5884
353	660754.9596	9849882.2698
354	660750.6208	9849900.1816
355	660741.4790	9849876.8132
356	660738.9285	9849889.9090
357	660482.2183	9849675.4970
358	660477.0655	9849689.7877
359	660473.0579	9849664.6360
360	660464.4701	9849676.0686
361	660507.4092	9849693.7891
362	660502.2566	9849709.7948
363	660495.9588	9849687.5012

364	660489.6611	9849698.9338
365	660418.0957	9849642.3424
366	660436.4164	9849642.9140
367	660404.9277	9849633.7679
368	660427.2561	9849632.0531
369	660439.2790	9849661.2062
370	660451.3020	9849669.7807
371	660429.5462	9849650.3452
372	660448.4394	9849650.9169
373	660575.0028	9849764.0904
374	660596.4426	9849762.9332
375	660558.1988	9849755.4121
376	660581.9563	9849751.9409
377	660597.6015	9849788.9679
378	660621.9384	9849783.7610
379	660588.3302	9849779.1326
380	660609.7699	9849773.9257
381	660531.4552	9849713.7962
382	660533.7454	9849732.0884
383	660518.2873	9849705.2218
384	660514.8520	9849721.7990
385	660559.5089	9849728.6586
386	660565.7316	9849739.2128
387	660543.4782	9849720.6558
388	660545.7683	9849743.5210
389	659359.8831	9848827.9292
390	659361.8641	9848846.9851
391	659343.8274	9848819.9139
392	659348.3230	9848838.1888
393	659384.0209	9848848.2676
394	659385.9476	9848864.6188
395	659370.5342	9848838.3286

396	659374.0664	9848855.9622
397	659304.9728	9848807.0894
398	659315.2484	9848815.4253
399	659291.1650	9848797.7917
400	659313.9639	9848800.0359
401	659332.5885	9848812.5398
402	659332.9095	9848829.8529
403	659322.3129	9848804.8451
404	659323.2762	9848822.1582
405	659455.6638	9848919.2277
406	659464.0127	9848906.0826
407	659442.4982	9848908.3269
408	659453.7371	9848896.7848
409	659487.1328	9848935.8995
410	659500.9407	9848929.4873
411	659470.1139	9848928.2048
412	659474.9305	9848918.5865
413	659407.4621	9848864.9394
414	659410.0311	9848882.2524
415	659393.3332	9848855.9622
416	659398.1499	9848873.5959
417	659427.6922	9848881.6112
418	659441.1790	9848885.1379
419	659417.4166	9848872.9547
420	659422.2334	9848891.2296
421	659146.5054	9848675.2786
422	659148.3976	9848694.1714
423	659125.6908	9848674.0191
424	659139.8825	9848684.7250
425	659176.7810	9848695.7458
426	659173.6273	9848711.8046
427	659161.0124	9848686.2994

428	659156.2818	9848702.9880
429	659098.2037	9848634.2158
430	659096.9921	9848654.8115
431	659080.5430	9848622.5652
432	659083.3813	9848642.7175
433	659123.7986	9848652.6073
434	659135.7827	9848662.3686
435	659108.3455	9848645.6800
436	659113.0760	9848665.5174
437	659238.0281	9848760.4399
438	659266.4114	9848764.5334
439	659220.9981	9848748.7894
440	659248.1200	9848750.6787
441	659286.9106	9848775.2392
442	659298.8717	9848787.2115
443	659254.1120	9848777.1285
444	659273.0343	9848785.6303
445	659184.6652	9848720.3064
446	659198.6067	9848713.5229
447	659169.8428	9848691.3375
448	659188.4497	9848704.5624
449	659208.6986	9848738.0835
450	659227.6208	9848739.3430
451	659196.0837	9848726.4330
452	659208.6986	9848723.9139
453	659501.9040	9848949.3652
454	659747.3696	9849120.4797
455	659776.3465	9849122.1617
456	659753.0976	9849128.2172
457	659736.2507	9849115.4334
458	659774.1716	9849140.8459
459	659793.5794	9849147.3050

460	659765.5645	9849139.3189
461	659788.1884	9849131.6954
462	659729.5119	9849084.8197
463	659710.6432	9849100.2948
464	659712.3279	9849071.6995
465	659699.8611	9849086.1653
466	659760.1734	9849106.6866
467	659726.8163	9849107.0231
468	659743.3264	9849096.5942
469	659736.2507	9849111.3965
470	659886.8445	9849196.8253
471	659889.5400	9849215.6646
472	659871.2106	9849186.0601
473	659872.2887	9849207.0524
474	659925.1210	9849223.7386
475	659931.0512	9849254.9579
476	659904.6351	9849214.5881
477	659905.7132	9849239.3482
478	659820.5347	9849151.6112
479	659817.8392	9849169.9121
480	659804.9006	9849139.2311
481	659803.8224	9849158.0703
482	659852.3418	9849173.1417
483	659852.8810	9849194.6723
484	659838.3251	9849165.0677
485	659837.2469	9849183.3687
486	659555.6219	9848970.3805
487	659546.9518	9848976.7928
488	659564.6131	9848991.5409
489	659572.9620	9848981.9226
490	659590.3021	9849006.9303
491	659598.9721	9848996.3501

492	659576.8153	9849001.1592
493	659585.8065	9848989.9379
494	659527.3640	9848948.5789
495	659535.0707	9848971.6629
496	659511.8585	9848939.1056
497	659514.5195	9848956.5942
498	659529.9329	9848965.8919
499	659538.2818	9848955.9530
500	659546.9518	9848962.6858
501	659554.6586	9848984.4874
502	659673.2428	9849051.5146
503	659661.4499	9849060.2613
504	659661.7225	9849038.8674
505	659643.5278	9849049.9691
506	659700.5350	9849062.9527
507	659687.7312	9849079.7734
508	659688.7420	9849058.2429
509	659674.5906	9849070.3538
510	659625.6699	9849014.9819
511	659609.1598	9849024.7380
512	659612.1923	9849006.5716
513	659601.7472	9849016.3276
514	659646.5603	9849029.7842
515	659631.3980	9849044.2501
516	659637.4629	9849021.7102
517	659623.6483	9849034.4940
518	659840.1820	9843219.9170
519	659799.6290	9843256.6910
520	659849.4350	9843210.7060
521	659796.2080	9843252.9050
522	659817.7540	9843238.9270
523	659817.2410	9843238.7290

524	659829.7550	9843229.7950
525	659820.1720	9843239.6220
526	659850.6150	9843211.1520
527	659812.1170	9843243.0540
528	659823.0860	9843230.9420
529	659823.9690	9843231.9140
530	659850.3160	9843210.9720
531	659849.4100	9843211.1770
532	659810.9600	9843241.9940
533	659850.4720	9843210.5410
534	659721.8280	9843305.5460
535	659699.4970	9843313.6600
536	659719.2530	9843299.9630
537	659727.2130	9843302.2070
538	659692.0500	9843319.9250
539	659689.6380	9843321.5820
540	659702.6440	9843317.8560
541	659691.5710	9843319.1030
542	659744.2370	9843291.5720
543	659759.7760	9843275.3140
544	659815.7380	9843239.6750
545	659816.3580	9843240.4410
546	659752.8760	9843282.2250
547	659732.4170	9843291.2770
548	659762.0150	9843280.3350
549	659753.4400	9843283.2370
550	659914.1700	9843177.1100
551	659915.7930	9843173.8840
552	659933.0370	9843163.1840
553	659914.9370	9843170.6100
554	659915.6660	9843173.2880
555	659890.9280	9843183.0840

1		
557	659916.4170	9843172.8630
558	659952.4230	9843154.8000
559	659930.7370	9843167.5250
560	659945.4940	9843155.5520
561	659951.1930	9843153.1250
562	659930.0640	9843167.5940
563	659934.1520	9843165.2140
564	659927.8100	9843163.6800
565	659928.8270	9843165.4450
566	659856.9050	9843206.6280
567	659854.5090	9843207.9700
568	659838.8260	9843217.1710
569	659838.3790	9843216.5230
570	659854.0220	9843207.6410
571	659822.7940	9843230.5220
572	659854.0940	9843208.3560
573	659853.8000	9843208.0390
574	659859.3700	9843199.5390
575	659873.1110	9843197.0610
576	659882.4240	9843187.0180
577	659884.4300	9843191.4910
578	659839.4580	9843215.6490
579	659839.9880	9843216.0730
580	659844.0610	9843210.8150
581	659864.2910	9843202.0650
582	659688.9950	9843320.8540
583	659507.1220	9843435.5590
584	659496.3780	9843446.5000
585	659507.1580	9843435.4830
586	659508.2910	9843429.1640
587	659490.7830	9843447.4250

588	659491.2080	9843447.8740
589	659498.0650	9843438.3720
590	659474.5320	9843468.4140
591	659524.8730	9843422.8040
592	659514.9060	9843429.7370
593	659525.8350	9843421.2820
594	659524.5660	9843422.1950
595	659508.4060	9843434.1940
596	659527.7070	9843416.6570
597	659547.8720	9843405.6160
598	659547.0000	9843402.7720
599	659475.1300	9843462.3030
600	659451.5760	9843490.6220
601	659476.7870	9843461.8070
602	659475.7100	9843462.8610
603	659449.3550	9843490.0090
604	659447.4290	9843492.0860
605	659468.7960	9843467.8680
606	659450.0830	9843490.7830
607	659468.2800	9843474.7880
608	659466.9060	9843473.5080
609	659490.0030	9843448.8880
610	659489.5320	9843448.4310
611	659480.0800	9843456.4900
612	659476.4210	9843461.2490
613	659463.3970	9843476.9230
614	659464.3430	9843477.9380
615	659649.7820	9843351.9680
616	659649.1530	9843351.9030
617	659650.1640	9843351.6500
618	659647.5860	9843348.2140
619	659637.9200	9843360.4310

620	659624.0120	9843367.4360
621	659649.2760	9843351.4380
622	659635.0350	9843356.6210
623	659678.5170	9843332.2780
624	659678.2790	9843331.7070
625	659680.9880	9843331.2600
626	659677.8490	9843327.9210
627	659652.1940	9843350.8250
628	659667.1530	9843334.9920
629	659677.6610	9843332.1110
630	659677.7950	9843332.6000
631	659571.1000	9843394.1220
632	659591.1780	9843383.5320
633	659599.5290	9843382.7640
634	659599.0980	9843381.6510
635	659538.4830	9843416.4440
636	659526.1960	9843422.0700
637	659573.3180	9843398.4730
638	659555.4060	9843402.4310
639	659625.6310	9843366.5840
640	659615.3160	9843374.2300
641	659623.3130	9843366.5080
642	659625.0430	9843365.4230
643	659596.1840	9843382.9540
644	659596.5530	9843384.5060
645	659613.2980	9843370.9990
646	659591.8200	9843388.3760
647	660101.0640	9843004.8130
648	660102.7850	9843005.6250
649	660104.4990	9843002.2520
650	660102.8530	9843001.4260
651	660230.0900	9842740.7610

652	660230.7330	9842740.9230
653	660235.8340	9842736.6500
654	660231.8400	9842734.8240
655	660237.5420	9842724.2530
656	660241.1350	9842726.6370
657	660106.5910	9843001.2800
658	660102.6410	9842999.7540
659	660239.0000	9842725.2540
660	660239.4860	9842725.6850
661	660239.6910	9842724.9580
662	660239.1250	9842724.6450
663	660216.5390	9842764.8220
664	660219.9350	9842767.4590
665	660087.2810	9843038.9010
666	660082.9830	9843037.2370
667	660217.6630	9842767.3300
668	660218.0020	9842767.1220
669	660218.0100	9842766.5000
670	660217.5080	9842766.6870
671	660223.3870	9842750.8860
672	660227.2940	9842752.9500
673	660229.5020	9842741.8810
674	660230.0110	9842742.0830
675	660224.4260	9842753.9620
676	660224.8400	9842754.2480
677	660225.1880	9842752.9920
678	660224.6910	9842752.7960
679	660151.2070	9842913.7930
680	660266.9330	9842683.6290
681	660147.6310	9842916.2550
682	660149.5650	9842916.8680
683	660129.8830	9842961.4360

684	660257.6700	9842688.0230
685	660262.0590	9842678.5030
686	660124.9320	9842958.6130
687	660159.4940	9842899.3000
688	660160.0720	9842885.0690
689	660152.6530	9842912.9700
690	660159.3330	9842899.3570
691	660149.6080	9842914.1090
692	660148.8760	9842913.6540
693	660147.0100	9842914.0670
694	660153.8860	9842912.8110
695	660243.2130	9842714.0990
696	660245.3600	9842712.2280
697	660247.9880	9842705.5600
698	660247.0070	9842716.0760
699	660243.4500	9842715.3890
700	660108.5900	9842997.3110
701	660244.5930	9842712.0180
702	660243.2130	9842714.7530
703	660258.2700	9842691.5470
704	660257.7880	9842692.2080
705	660261.4350	9842690.3860
706	660257.8240	9842690.8140
707	660110.7560	9842983.9530
708	660251.6100	9842707.7450
709	660257.0430	9842691.7980
710	660114.8360	9842986.3280
711	660213.5690	9842780.2620
712	660051.7250	9843098.3680
713	660052.9300	9843094.6670
714	660051.8540	9843097.2670
715	660051.1200	9843097.8020

716	660047.1570	9843100.2780
717	660003.4400	9843129.0610
718	660052.4070	9843094.1160
719	660046.4740	9843099.7370
720	660057.1000	9843096.4820
721	660154.9600	9842897.0770
722	660160.5240	9842895.7630
723	660152.6510	9842912.9830
724	660052.6640	9843100.4470
725	660052.5270	9843097.9000
726	660154.9940	9842897.0140
727	660049.6180	9843096.9040
728	659953.3080	9843151.9930
729	659945.4950	9843159.6410
730	659965.7440	9843147.0430
731	659954.7760	9843155.5770
732	659944.7960	9843159.9090
733	659946.2970	9843157.4660
734	659945.3040	9843159.0940
735	659944.6000	9843159.3320
736	659994.7400	9843133.9410
737	659993.9780	9843136.4750
738	660005.7840	9843132.7750
739	659996.8090	9843137.6650
740	659995.1080	9843135.9500
741	659968.5510	9843149.9310
742	659994.2310	9843136.9780
743	659995.2980	9843136.6280
744	660197.8880	9842805.4780
745	660196.5910	9842807.6790
746	660199.5690	9842806.9730
747	660198.5010	9842805.6710

748	660187.9290	9842820.5210
749	660181.7900	9842832.3250
750	660197.4510	9842808.2030
751	660191.6360	9842822.1790
752	660211.7250	9842777.6570
753	660212.6760	9842778.0680
754	660209.4860	9842778.1870
755	660210.6100	9842779.8210
756	660201.6310	9842793.3980
757	660196.0270	9842804.6780
758	660211.0250	9842781.2400
759	660205.4960	9842795.6470
760	660176.1510	9842846.9800
761	660171.8620	9842865.0230
762	660174.7260	9842848.2320
763	660175.3270	9842848.5820
764	660161.5470	9842880.9470
765	660156.4020	9842893.0890
766	660168.0970	9842863.7880
767	660165.3750	9842882.5270
768	660183.3270	9842835.1550
769	660182.3850	9842837.2100
770	660185.2510	9842834.5760
771	660183.9440	9842835.3360
772	660175.0520	9842846.3260
773	660175.7230	9842846.6540
774	660182.9640	9842837.6850
775	660179.1860	9842847.5100
776	659448.1940	9843493.2690
777	659375.1730	9845443.3650
778	659338.5370	9845487.8300
779	659434.2170	9845374.3680

780	659377.6560	9845434.1760
781	659329.0630	9845499.7070
782	659325.3310	9845497.2410
783	659364.4260	9845449.8750
784	659336.7640	9845483.7580
785	659521.6050	9845267.4570
786	659483.4330	9845307.3260
787	659550.3920	9845233.5580
788	659511.8960	9845272.2190
789	659429.0530	9845373.4410
790	659402.7640	9845405.0640
791	659455.0070	9845342.7330
792	659482.1430	9845315.4910
793	659290.9760	9845539.6480
794	659279.5860	9845560.8280
795	659293.1270	9845532.3130
796	659290.5190	9845535.6430
797	659247.5860	9845598.6840
798	659230.1990	9845614.8160
799	659272.0570	9845563.3290
800	659248.6100	9845591.7710
801	659329.6680	9845508.7190
802	659317.6080	9845499.7660
803	659331.5860	9845505.6930
804	659321.3180	9845496.6630
805	659300.3900	9845535.4400
806	659297.5680	9845531.9120
807	659322.6130	9845507.7640
808	659318.9320	9845505.0380
809	659749.6780	9844991.5570
810	659748.8400	9844996.6180
811	659726.1560	9844966.7430

812	659740.8690	9844983.9160
813	659737.7400	9845009.1000
814	659733.6090	9845007.1660
815	659744.3050	9844993.4770
816	659736.9220	9844985.0790
817	659690.1690	9844923.6590
818	659717.3500	9844949.3540
819	659663.8340	9844878.5470
820	659692.5130	9844919.6240
821	659737.5150	9844974.7810
822	659726.9310	9844966.2430
823	659713.2020	9844951.4030
824	659713.7850	9844950.7820
825	659595.1310	9845170.9480
826	659559.1880	9845214.4140
827	659562.6920	9845217.3480
828	659626.5990	9845135.5620
829	659556.1310	9845233.8920
830	659553.8350	9845235.9500
831	659553.8500	9845229.0020
832	659543.2890	9845234.8410
833	659692.0890	9845058.3960
834	659662.6420	9845093.0970
835	659710.3580	9845037.5260
836	659711.4760	9845042.3970
837	659637.6850	9845129.2880
838	659591.1440	9845182.8710
839	659665.6180	9845096.8320
840	659638.1680	9845122.4630
841	659232.7920	9845617.2390
842	658807.6830	9846131.7820
843	658803.5370	9846128.7820

844	658837.7020	9846094.0050
845	658826.0120	9846101.3580
846	658750.8180	9846201.1850
847	658742.6540	9846203.9640
848	658776.5070	9846169.9570
849	658775.3490	9846163.7490
850	658848.3930	9846073.8310
851	658849.7130	9846072.1490
852	658863.1380	9846048.8470
853	658863.4490	9846053.7840
854	658842.6760	9846092.7490
855	658840.1980	9846094.1270
856	658836.5090	9846087.9810
857	658840.9190	9846090.5680
858	658580.4780	9846405.9390
859	658590.5330	9846400.8350
860	658622.4000	9846354.7110
861	658623.7840	9846360.1140
862	658549.1160	9846452.2230
863	658540.1130	9846455.9520
864	658543.1380	9846452.1750
865	658539.7000	9846452.5580
866	658703.5710	9846259.6190
867	658710.5540	9846244.5760
868	658740.0080	9846207.1430
869	658723.4930	9846235.1860
870	658669.3980	9846301.2100
871	658644.3190	9846333.3970
872	658700.7230	9846257.1550
873	658666.4840	9846298.5250
874	659095.5090	9845785.2350
875	659071.4440	9845813.7040

876	659115.7190	9845754.2830
877	659122.0420	9845752.2120
878	659095.1780	9845779.7690
879	659053.2170	9845829.3990
880	659054.6480	9845827.7560
881	659049.8210	9845839.5200
882	659181.3670	9845673.8090
883	659169.9390	9845693.5810
884	659205.4950	9845644.6830
885	659192.9920	9845665.1830
886	659167.8770	9845698.1260
887	659165.4710	9845698.9860
888	659170.4120	9845695.1330
889	659151.2230	9845710.6340
890	658930.4610	9845984.0650
891	658895.8310	9846022.9600
892	658957.9710	9845944.8700
893	658927.6070	9845981.6680
894	658873.0690	9846043.0030
895	658867.7810	9846042.9560
896	658894.4840	9846024.7190
897	658876.4150	9846045.1370
898	659019.0120	9845867.4510
899	659034.1140	9845862.4670
900	659039.5200	9845851.9140
901	659037.1740	9845858.7380
902	658973.5760	9845924.7960
903	658960.9570	9845947.0240
904	659030.1350	9845860.9490
905	658993.4930	9845897.9350
906	659353.9100	9843718.1380
907	659347.8160	9843744.9160

908	659357.5410	9843687.0000
909	659350.0410	9843716.5400
910	659342.0990	9843801.4170
911	659347.6070	9843792.2310
912	659351.2320	9843756.9190
913	659345.5800	9843776.4170
914	659366.4540	9843626.0530
915	659357.4390	9843642.3750
916	659363.5390	9843629.8020
917	659352.5300	9843636.8310
918	659353.0330	9843685.2110
919	659353.0170	9843685.7340
920	659355.2000	9843661.0890
921	659360.4690	9843660.6540
922	659283.5200	9843970.9620
923	659298.2570	9844010.1710
924	659284.3370	9843951.1120
925	659279.8490	9843957.2420
926	659331.0160	9844082.3860
927	659343.2660	9844127.4810
928	659304.9650	9844013.1540
929	659325.9570	9844082.8790
930	659319.3540	9843852.5070
931	659301.5540	9843874.7210
932	659341.9090	9843818.3020
933	659340.0170	9843823.8750
934	659285.5300	9843944.2500
935	659285.8730	9843947.6000
936	659282.7040	9843902.1350
937	659282.6230	9843943.5810
938	659407.3150	9843529.8130
939	659406.3850	9843528.8820

940	659419.5900	9843520.0150
941	659416.3880	9843517.0610
942	659405.0700	9843527.6530
943	659406.2910	9843527.6160
944	659404.9540	9843530.4280
945	659405.8180	9843531.3900
946	659433.2010	9843507.3080
947	659430.1140	9843504.2270
948	659460.4030	9843476.4050
949	659447.3470	9843488.3090
950	659426.5230	9843508.7710
951	659426.1770	9843508.5390
952	659429.1730	9843505.7530
953	659429.3830	9843506.1420
954	659365.8020	9843589.2300
955	659368.8140	9843590.1410
956	659370.3520	9843573.9100
957	659373.0690	9843575.0940
958	659363.8990	9843623.5010
959	659354.8180	9843630.5870
960	659362.7200	9843603.6440
961	659360.1260	9843622.5770
962	659404.7950	9843529.6180
963	659392.8570	9843545.0050
964	659406.7510	9843528.0480
965	659404.9740	9843528.8850
966	659380.2330	9843554.7680
967	659375.6830	9843560.7950
968	659389.8120	9843542.8540
969	659384.6250	9843554.6100
970	659347.3690	9844125.6630
971	659557.7320	9844677.5780

972	659570.6490	9844711.4610
973	659541.2540	9844648.5670
974	659553.4550	9844679.1330
975	659587.3910	9844766.1750
976	659591.7460	9844764.7060
977	659577.1350	9844729.4590
978	659572.7920	9844731.3370
979	659481.6350	9844547.1320
980	659523.1300	9844609.6460
981	659500.4660	9844579.1070
982	659483.4700	9844547.2440
983	659505.8820	9844592.3300
984	659529.5180	9844625.6460
985	659490.7440	9844567.2070
986	659544.7840	9844647.2010
987	659636.2520	9844845.0110
988	659641.2280	9844843.3760
989	659627.3090	9844831.4330
990	659633.3570	9844831.3120
991	659661.9900	9844884.1210
992	659679.9060	9844909.8250
993	659655.7550	9844873.9830
994	659658.3700	9844869.9790
995	659615.7370	9844793.3660
996	659610.2160	9844797.7810
997	659606.9790	9844792.3140
998	659613.5340	9844789.6360
999	659606.0310	9844805.4010
1000	659604.2540	9844800.0290
1001	659605.0300	9844798.5930
1002	659608.2190	9844803.1870
1003	659349.8330	9844342.1630

1004	659366.6580	9844360.5350
1005	659341.9880	9844329.9200
1006	659348.5670	9844332.3620
1007	659403.7860	9844392.5220
1008	659418.6960	9844413.0950
1009	659369.7470	9844357.5080
1010	659400.6140	9844395.5060
1011	659357.5740	9844170.0880
1012	659353.0270	9844177.5980
1013	659351.0640	9844134.7240
1014	659353.1200	9844164.7710
1015	659339.8140	9844303.6990
1016	659337.6500	9844319.0760
1017	659352.7870	9844205.2670
1018	659341.1450	9844262.8770
1019	659447.0110	9844464.9530
1020	659463.8730	9844500.1670
1021	659441.5050	9844444.3660
1022	659450.5580	9844462.5270
1023	659484.1120	9844534.6260
1024	659480.9530	9844539.3400
1025	659469.1260	9844500.4710
1026	659478.6930	9844532.7400
1027	659432.4370	9844422.3030
1028	659424.7680	9844423.8030
1029	659422.0320	9844410.6340
1030	659425.8610	9844421.2590
1031	659438.5510	9844429.1160
1032	659430.9740	9844426.5710
1033	659439.0340	9844422.9540
1034	659427.8070	9844427.4490
1035	660463.8976	9849657.7764

1036	660732.0060	9849883.3611
1037	659431.8667	9848899.2449
1038	660155.0000	9842897.0000
1039	658835.5150	9848438.9236

Elaborado por López y Salazar (2022).

Ilustración 2 Irregularidades en la capa de rodadura. Elaborado por: López y Salazar (2022).

Ilustración 3 Mal estado de la vía. Elaborado por: López y Salazar (2022).

Ilustración 4 – Inicio de la Vía Puerto Pechiche Y Cruce a Vinces Mocache. Elaborado por: López y Salazar (2022).

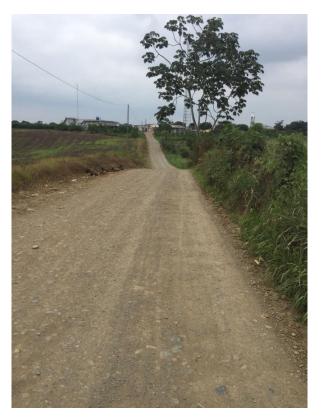


Ilustración 5 Tramo de la vía con carencia de la carpeta asfáltica. Elaborado por: López y Salazar (2022).

Ilustración 6 Levantamiento topográfico planimétrico utilizando la estación total. Elaborado por: López y Salazar (2022).

Ilustración 7 Lectura de los datos obtenidos en la estación total. Elaborado por: López y Salazar (2022).

3.5.2 Para el segundo objetivo específico que menciona:

Categorizar el tipo de vía Puerto pechiche y cruce a Vinces – Mocache por medio de un tráfico promedio diario anual (TPDA).

3.5.2.1 Trafico Promedio Diario Anual – Estación 1

Tabla 5 Estación 1, día 1 – TPDA.

REHABILIT	ACIÓN DE L			HICHE Y C			OCACHE,
				ICO CLASI		OS	
Intersección:							
Sentido	AMBOS SI	MBOS SENTIDOS		DE 2 CAR	RILES	Inicio:	Fin:
Deniado	111111111111111111111111111111111111111		,			6:00	18:00
Estación:	1		Ubicación:	Puerto Pec	hiche y cruce Mocache	a Vinces -	13-dic-21
	Livianos		Pes	sados			VOLUMEN
Periodo cada 15'	Autos Camionetas Motos	Bus	2 E	3 E	>4E	Total	HORARIO DE TRANSITO
06:00-06:15	15	1	1			17	
06:15-06:30	12	1				13	62
06:30-06:45	10	1	1			12	02
06:45-07:00	16	2	2			20	
07:00-07:15	18	1	1	1		21	4
07:15-07:30	15	1				16	72
07:30-07:45	17	2	1			20	-
07:45-08:00	13 12	1	1	1		15 14	
08:00-08:15 08:15-08:30	12	1	 	1		15	1
08:30-08:45	13	2	1			16	61
08:45-09:00	12	2	2			16	
09:00-09:15	14	1				15	
09:15-09:30	8	1	1			10	1
09:30-09:45	7	2	2			11	47
09:45-10:00	10	1				11	1
10:00-10:15	10	1				11	
10:15-10:30	11	1	2			14	10
10:30-10:45	10	1	2			13	48
10:45-11:00	8	2				10	
11:00-11:15	12	1	1	1		15	
11:15-11:30	8	1	1	1		11	45
11:30-11:45	8	1				9	43
11:45-12:00	7	1	2			10	
12:00-12:15	7	2	1			10	
12:15-12:30	7	1				8	42
12:30-12:45	10	1	2			13	
12:45-13:00	9	1	1			11	
13:00-13:15	10	2				12	
13:15-13:30	12	1	1			14	52
13:30-13:45	11	1	1	2		13	4
13:45-14:00	10	1		2		13	
14:00-14:15	12	1				13	4
14:15-14:30 14:30-14:45	10 13	1				11 14	51
14:45-15:00	10	2	1			13	1
15:00-15:15	15	1	1			16	
15:15-15:30	16	1				17	1
15:30-15:45	8	1		1		10	57
15:45-16:00	12	1	1	-		14	1
16:00-16:15	12	1		2	1	16	
16:15-16:30	8	1				9	1
16:30-16:45	11	1	2			14	54
16:45-17:00	14	1				15	1
17:00-17:15	12	1				13	
17:15-17:30	8	1	2			11	53
17:30-17:45	13	1		1		15	
17:45-18:00	12	1	1			14	<u></u>
SUMATORIA	542	57	34	10	1	644	644

Tabla 6 Estación 1, día 2 – TPDA.

REHABILIT		LA VÍA PU ON PUEBL					OCACHE,
	(CONTEO V	OLUMÉTR	ICO CLASI	IFICADO		
Intersección:	1		ī				
Sentido	AMBOS S	ENTIDOS	NTIDOS VIA DE 2 CARRILES				Fin:
						6:00	18:00
Estación:	1		Ubicación:	Puerto Peo	chiche y cruc Mocache	e a Vinces -	14-dic-21
	Livianos		Pes	ados			VOLUMEN
Periodo cada 15'	Autos Camionetas Motos	Bus	2 E	3 E	>4E	Total	HORARIO DE TRANSITO
06:00-06:15	12	1				13	
06:15-06:30	10	1	1			12	47
06:30-06:45	13	2				15	1 "
06:45-07:00	6	1				7	
07:00-07:15	18	1	2	2		23	4
07:15-07:30	16	1			-	17	73
07:30-07:45	14	1	4		-	15	1
07:45-08:00 08:00-08:15	15 10	2	2		-	18 14	1
08:15-08:30	16	1				17	-
08:30-08:45	14	1				15	62
08:45-09:00	12	1	2	1		16	1
09:00-09:15	15	1		1		16	
09:15-09:30	10	1				11	1
09:30-09:45	7	2	2			11	50
09:45-10:00	10	1		1		12	1
10:00-10:15	8	1	1	1		10	
10:15-10:30	13	2				15	53
10:30-10:45	12	1	2			15	
10:45-11:00	10	1		2		13	1
11:00-11:15	12	2	1			15	
11:15-11:30	7	1	1			9	1
11:30-11:45	10	2				12	48
11:45-12:00	9	1	2			12	1
12:00-12:15	7	1	2	1		11	
12:15-12:30	9	1				10	1
12:30-12:45	11	1	2			14	46
12:45-13:00	9	2				11	1
13:00-13:15	10	2				12	
13:15-13:30	12	1	1			14	1
13:30-13:45	10	1				11	49
13:45-14:00	11	1				12	1
14:00-14:15	13	2				15	
14:15-14:30	14	2	2			18	1
14:30-14:45	13	1		1		15	61
14:45-15:00	10	2	1			13	1
15:00-15:15	16	1				17	
15:15-15:30	12	1	1			14	59
15:30-15:45	10	1		2		13	
15:45-16:00	14	1				15	1
16:00-16:15	11	2				13	48
16:15-16:30	10	1				11	
16:30-16:45	8	1	2			11	
16:45-17:00	11	1		1		13	
17:00-17:15	12	2				14	
17:15-17:30	10	1	1			12	55
17:30-17:45	14	1		1		16	
17:45-18:00	11	1	1			13	
SUMATORIA	547	62	30	12	0	651	651

Tabla 7 Estación 1, día 3 – TPDA.

REHABILIT			ERTO PEC OVIEJO PE				OCACHE,
	(CONTEO V	OLUMÉTR	ICO CLAS	FICADO		
Intersección:							
Sentido	AMBOS S	ENTIDOS	VIA	DE 2 CAR	RILES	Inicio: 6:00	Fin: 18:00
Estación:	1		Ubicación:	Puerto Pe	chiche y cruc Mocache	e a Vinces -	15-dic-21
	Livianos		Pesa	ados			VOLUMEN
	Autos		1 050	i dos		1	HORARIO
Periodo cada 15'	Camionetas	Bus	2 E	3 E	>4E	Total	DE
	Motos	Dus	2.5	3 L	/ TL		TRANSITO
06:00-06:15	8	1	2			11	IKANSIIO
		1				11	4
06:15-06:30	14	1	1			16	55
06:30-06:45	11	1				12	1
06:45-07:00	15	1				16	
07:00-07:15	16	1				17	4
07:15-07:30	10	1	1			12	55
07:30-07:45	9	1	1	2		13]
07:45-08:00	12	1				13	<u> </u>
08:00-08:15	14	2				16	
08:15-08:30	10	2			Ī	12	1
08:30-08:45	10	1	2			13	53
08:45-09:00	11	1	_			12	
09:00-09:15	8	1	1	2		12	ł
			1	2		-	1
09:15-09:30	10	1				11	56
09:30-09:45	14	1				15	4
09:45-10:00	15	2	1			18	
10:00-10:15	10	1				11	52
10:15-10:30	12	2				14	
10:30-10:45	10	1	2			13	32
10:45-11:00	11	2		1		14	
11:00-11:15	9	2				11	
11:15-11:30	8	1	1			10	1
11:30-11:45	10	1	_			11	45
11:45-12:00	12	1				13	1
12:00-12:15	14	1	1	1		17	
	10	2		1		14	1
12:15-12:30			2			-	55
12:30-12:45	9	2	2			13	
12:45-13:00	10	1				11	
13:00-13:15	12	1	1	2	1	16	4
13:15-13:30	15	1				16	65
13:30-13:45	18	1				19]
13:45-14:00	10	2	2			14	
14:00-14:15	12	1				13]
14:15-14:30	10	1				11	
14:30-14:45	11	1				12	52
14:45-15:00	14	1	1		Ī	16	1
15:00-15:15	13	2		1		16	1
15:15-15:30	9	2	1	-	1	12	52
15:30-15:45	10	1			1	11	
15:45-16:00	12	1	 		1	13	1
			 		1	-	
16:00-16:15	14	1			1	15	- - 48
16:15-16:30	8	1	2			11	
16:30-16:45	7	1	1	1	ļ	10	
16:45-17:00	10	2				12	
17:00-17:15	14	1	1			16]
17:15-17:30	16	1	2	2		21	69
17:30-17:45	18	1		1		20	
17:45-18:00	10	1	1			12	
SUMATORIA	555	60	29	13	0	657	657
JUMATORIA	555	50		10		557	051

Tabla 8 Estación 1, día 4 – TPDA.

			OVIEJO PR				
• • • • • • • • • • • • • • • • • • • •	(CONTEO V	OLUMÉTRI	ICO CLAS	IFICADO		
Intersección:						Tutata.	I _E :
Sentido	AMBOS SENTIDOS		TDOS VIA DE 2 CARRILES		Inicio: 6:00	Fin: 18:00	
Estación:	1		Ubicación: Puerto Pechiche y cruce a Vir Mocache		ce a Vinces -	16-dic-21	
	Livianos		Pesa	idos			VOLUMEN
Periodo cada 15'	Autos Camionetas Motos	Bus	2 E	3 E	>4E	Total	HORARIO DE TRANSITO
06:00-06:15	9	2	1			12	TIQ II (BITC
06:15-06:30	15	1		1		17	
06:30-06:45	8	1	1			10	49
06:45-07:00	8	1	1			10	
07:00-07:15	10	2	1			13	
07:15-07:30	10	1	1		Ī	12	
07:30-07:45	12	1	1	1		15	53
07:45-08:00	11	1	1			13	1
08:00-08:15	12	1				13	
08:15-08:30	10	2				12	45
08:30-08:45	9	1				10	45
08:45-09:00	8	1		1		10	1
09:00-09:15	12	1				13	
09:15-09:30	10	2				12	50
09:30-09:45	9	1	1			11	50
09:45-10:00	11	2	1			14	1
10:00-10:15	12	1				13	
10:15-10:30	10	1		1		12	1
10:30-10:45	16	2				18	- 53
10:45-11:00	8	1	1			10	1
11:00-11:15	12	1	1			14	
11:15-11:30	10	1		1		12	1
11:30-11:45	8	2				10	49
11:45-12:00	12	1				13	1
12:00-12:15	14	1	1			16	
12:15-12:30	10	1				11	1
12:30-12:45	11	1	1	1		14	- 51
12:45-13:00	9	1				10	1
13:00-13:15	12	2				14	
13:15-13:30	10	1				11	1
13:30-13:45	10	1	1			12	- 51
13:45-14:00	12	2				14	1
14:00-14:15	11	1		1		13	
14:15-14:30	9	1	2			12	1
14:30-14:45	14	1				15	- 54
14:45-15:00	12	2				14	1
15:00-15:15	10	1				11	
15:15-15:30	14	1				15	52
15:30-15:45	10	2	2	1	Ī	15	
15:45-16:00	10	1				11	1
16:00-16:15	11	2				13	52
16:15-16:30	11	1			Ì	12	
16:30-16:45	10	2	1	1		14	
16:45-17:00	12	1			1	13	1
17:00-17:15	8	1				9	
17:15-17:30	9	1	1		1	11	49
17:30-17:45	10	2		2		14	
17:45-18:00	13	1	1			15	
SUMATORIA	514	62	21	11	0	608	608

Tabla 9 Estación 1, día 5 – TPDA.

REHABILIT			ERTO PECI OVIEJO PR			/INCES - MO LÍOS	OCACHE,
	(CONTEO V	OLUMÉTRI	ICO CLAS	IFICADO		
Intersección:							
Sentido	AMBOS S	ENTIDOS	VIA I	DE 2 CARI	RILES	Inicio: 6:00	Fin: 18:00
Estación:	1		Ubicación:	Puerto Pe	chiche y crud Mocache	ce a Vinces -	17-dic-21
	Livianos		Pesa	ndos			VOLUMEN
	Autos					1	HORARIO
Periodo cada 15'	Camionetas	Bus	2 E	3 E	>4E	Total	DE
	Motos						TRANSITO
06:00-06:15	17	2	2			21	
06:15-06:30	11	1				12	1
06:30-06:45	14	2	2	1		19	66
06:45-07:00	12	1	1			14	1
07:00-07:15	18	2	1			21	
07:15-07:30	14	1		1		16	Ī
07:30-07:45	15	1				16	75
07:45-08:00	18	2	2			22	1
08:00-08:15	19	1	1			21	1
08:15-08:30	12	2		1		15	7.
08:30-08:45	18	1				19	72
08:45-09:00	15	1		1		17	1
09:00-09:15	16	1	1			18	
09:15-09:30	19	1		1		21	7
09:30-09:45	20	3	2			25	78
09:45-10:00	13	1				14	1
10:00-10:15	14	1	1			16	
10:15-10:30	19	2	2			23	
10:30-10:45	18	1				19	77
10:45-11:00	17	1		1		19	1
11:00-11:15	18	2	1			21	
11:15-11:30	14	2	2	1		19	1 .,
11:30-11:45	15	1				16	74
11:45-12:00	14	2	2			18	1
12:00-12:15	13	1		1		15	
12:15-12:30	15	1				16	
12:30-12:45	12	2	1			15	65
12:45-13:00	16	1	2			19	1
13:00-13:15	14	1				15	
13:15-13:30	13	2	2	1		18	56
13:30-13:45	11	1				12	30
13:45-14:00	10	1				11	
14:00-14:15	19	1	2			22	
14:15-14:30	10	2		1		13	76
14:30-14:45	19	1				20	
14:45-15:00	18	1	2			21	
15:00-15:15	12	2				14	
15:15-15:30	17	1		1		19	68
15:30-15:45	12	1		1		14	
15:45-16:00	18	1	2			21	
16:00-16:15	14	2				16	77
16:15-16:30	15	2				17	
16:30-16:45	20	2				22	
16:45-17:00	21	1				22	
17:00-17:15	22	1	2	1		26	_
17:15-17:30	24	2				26	83
17:30-17:45	13	1		1		15	
17:45-18:00	12	2	2			16	
SUMATORIA	750	68	35	14	0	867	867

Tabla 10 Estación 1, día 6 – TPDA.

	CANT		OVIEJO PR	HICHE Y C COVINCIA			
	(CONTEO V	OLUMÉTRI	ICO CLAS	IFICADO		
Intersección:		T					1
Sentido	AMBOS S	ENTIDOS	VIA I	DE 2 CARI	RILES	Inicio: 6:00	Fin: 18:00
Estación:	1		Ubicación:	Ubicación: Puerto Pechiche y cruce Mocache			18-dic-21
	Livianos		Pesa	idos			VOLUMEN
Periodo cada 15'	Autos					Total	HORARIO
Periodo cada 15	Camionetas Motos	Bus	2 E	3 E	>4E	Total	DE TRANSITO
06:00-06:15	9	1				10	
06:15-06:30	8	2	1			11	1
06:30-06:45	10	1		1		12	46
06:45-07:00	11	2				13	1
07:00-07:15	10	1				11	
07:15-07:30	9	1	2	1		13	1
07:30-07:45	10	2	1		1	13	49
07:45-08:00	11	1	-		1	12	1
08:00-08:15	10	1				11	
08:15-08:30	9	1	1			11	1
08:30-08:45	10	2		1	1	13	50
08:45-09:00	13	2				15	1
09:00-09:15	12	1				13	
09:15-09:30	10	2				12	1
09:30-09:45	12	1				13	52
09:45-10:00	11	2		1		14	1
10:00-10:15	12	1	1			14	
10:15-10:30	10	2	-			12	1
10:30-10:45	9	1	2			12	49
10:45-11:00	10	1				11	1
11:00-11:15	12	2		1		15	
11:15-11:30	8	1	1			10	1
11:30-11:45	10	2	-			12	48
11:45-12:00	10	1				11	1
12:00-12:15	9	2	1			12	
12:15-12:30	10	1	-			11	1
12:30-12:45	11	2		1		14	49
12:45-13:00	10	1	1			12	1
13:00-13:15	12	1	-			13	
13:15-13:30	13	1	1			15	1
13:30-13:45	12	2	•			14	- 59
13:45-14:00	14	1	2			17	1
14:00-14:15	11	2				13	
14:15-14:30	15	1				16	1
14:30-14:45	12	1	2			15	56
14:45-15:00	9	2	-	1	1	12	1
15:00-15:15	13	1				14	
15:15-15:30	12	2			1	14	54
15:30-15:45	10	1				11	
15:45-16:00	13	2				15	1
16:00-16:15	10	1				11	50
16:15-16:30	10	1				11	
16:30-16:45	14	2				16	
16:45-17:00	11	1				12	1
17:00-17:15	13	2			1	15	
17:15-17:30	10	1				11	1
17:30-17:45	12	2				14	55
17:45-18:00	13	2				15	
SUMATORIA	525	69	16	7	0	617	617

Tabla 11 Estación 1, día 7 – TPDA.

REHABILIT			ERTO PEC OVIEJO PR				ОСАСНЕ,
	(CONTEO V	OLUMÉTR	ICO CLASI	FICADO		
Intersección:						1	T
Sentido	AMBOS S	ENTIDOS	VIA	DE 2 CARE	RILES	Inicio: 6:00	Fin: 18:00
Estación:	1		Ubicación:	Puerto Peo	chiche y cruc Mocache	e a Vinces -	19-dic-21
	Livianos		Pesa	idos			VOLUMEN
D : 1 1 15	Autos					T	HORARIO
Periodo cada 15'	Camionetas	Bus	2 E	3 E	>4E	Total	DE
	Motos						TRANSITO
06:00-06:15	11	1				12	
06:15-06:30	14	1				15	54
06:30-06:45	11	2				13	
06:45-07:00	10	2	2			14	
07:00-07:15	12	1				13	4
07:15-07:30	12	2			1	14	52
07:30-07:45	13	1			1	14	-
07:45-08:00	10	1			1	11	ļ
08:00-08:15	13	1				14	4
08:15-08:30	12	1		11	1	14	58
08:30-08:45	11	2				13	4
08:45-09:00	14	1	2			17	
09:00-09:15	12	1				13	4
09:15-09:30	10	1				11	50
09:30-09:45	11	1				12	4
09:45-10:00	13	1				14	1
10:00-10:15	12	1		1		14	
10:15-10:30	16	1				17	58
10:30-10:45	14	1	4			15	=
10:45-11:00	10	1	1			12	
11:00-11:15	14	1	1	1		17	4
11:15-11:30 11:30-11:45	11 10	1				12 11	51
11:45-12:00	9	2				11	4
12:00-12:15	10	2	1			13	
12:15-12:30	9	1	1			10	+
12:30-12:45	12	1				13	49
12:45-13:00	11	1		1		13	
13:00-13:15	14	1	1			16	
13:15-13:30	12	1				13	1
13:30-13:45	15	1				16	- 55
13:45-14:00	9	1			1	10	1
14:00-14:15	11	1			1	12	
14:15-14:30	8	1				9	1
14:30-14:45	8	1				9	41
14:45-15:00	9	2				11	1
15:00-15:15	7	1				8	1
15:15-15:30	8	1				9	35
15:30-15:45	7	1				8	
15:45-16:00	9	1				10	1
16:00-16:15	8	1				9	39
16:15-16:30	7	1				8	
16:30-16:45	9	2				11	
16:45-17:00	10	1				11	
17:00-17:15	9	1				10	
17:15-17:30	7	1				8	37
17:30-17:45	9	1				10	
17:45-18:00	8	1				9	
SUMATORIA	511	56	8	4		579	579

3.5.2.2 Trafico Promedio Diario Anual.

Tabla 12 Conteo Volumétrico en donde indica en valores de porcentaje la cantidad de vehículos que circularon durante el conteo realizado.

	Conteo volumetrico del trafico							
		condensado	del trafico dia	ario en una dire	eccion E-W			
FECHA	DIA	LIVIANO	BUS	2E	3E	> 4 Ejes	TOTAL	
13/12/2022	Lunes	542	57	34	10	1	644	
14/12/2022	Martes	547	62	30	12	0	651	
15/12/2022	Miercoles	555	60	29	13	0	657	
16/12/2022	Jueves	514	62	21	11	0	608	
17/12/2022	Viernes	750	68	35	14	0	867	
18/12/2022	Sabado	525	69	16	7	0	617	
19/12/2022	Domingo	511	56	8	4	0	579	
То	Total 3944 434 173 71 0 4623							
T.P.	T.P.D.S. 986 109 43 18 0 1156							
% De T	P.D.S.	85,31%	9,39%	3,74%	1,54%	0,00%	100,00%	

Elaborado por: López y Salazar (2022).

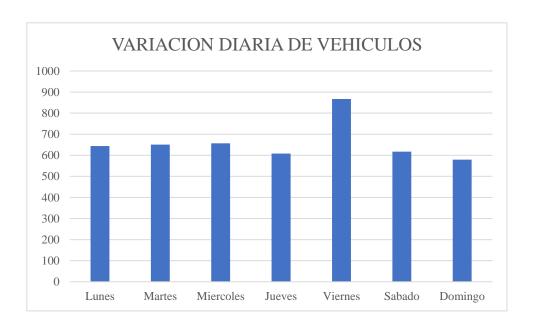


Ilustración 8 Gráfica de la variación diaria de vehículos.

Tabla 13 Cálculo de factor.

	Calculo de Factor Diario							
Dia de la Semana	TD(veh/dia)	TD/TPDS	Factor Fd=1/(TD/TPDS)					
Lunes	644	0,55721393	1,794642857					
Martes	651	0,563270604	1,775345622					
Miercoles	657	0,568462038	1,75913242					
Jueves	608	0,526065326	1,900904605					
Viernes	867	0,750162232	1,333044983					
Sabado	617	0,533852477	1,873176661					
Domingo	579	0,500973394	1,99611399					
TOTAL	4623		12,43236114					
PROMEDIO/7	660		1,776051591					

Tabla 14 Factor de Ajuste.

Factor d	e Ajuste
Mes	Factor
Enero	1.07
Febrero	1,132
Marzo	1,085
Abril	1,093
Mayo	1,012
Junio	1,034
Julio	1,982
Agosto	0,974
Septiembre	0,923
Octubre	0,951
Noviembre	0,958
Diciembre	0,878

Elaborado por: López y Salazar (2022).

Tabla 15 Factor Diario.

T.P.D.A. Ex	istente: (T.P.D.S.)(Fm)(Fd)	1802
Fm	Factor mansual	1002
Fd	Factor Diario	

Tabla 16 Trafico Generado.

TG: (25	451	
TG	Trafico Generado	451

Tabla 17 Trafico Asignado.

Trafico Asignado: (T.P.D.A. Existente) + TG	2253
---	------

Elaborado por: López y Salazar (2022).

Tabla 18 Composición de tráfico del tpda.

Composicion de Trafico									
Tipo De Vehiculo	Numero	%							
Liviano	986	85,33%							
Buses	109	9,39%							
Pesados	61	5,28%							
Total	1156	100%							

Elaborado por: López y Salazar (2022).

Tabla 19 Trafico Asignado.

(T.A.) Trafico Asignado									
Composicion de Trafico									
Tipo De Vehiculo	Numana	0/							
Tining	Numero	%							
Liviano	1922	85,33%							
Buses	212	9,39%							
Pesados	119	5,28%							
Total	2253	100%							

Tabla 20 Composición de tráfico equivalente.

Composicion de Trafico								
Tipo De Vehiculo	Numero	%						
Liviano	986	85,33%						
Buses	109	9,39%						
2E	43	3,74%						
3E	18	1,54%						
Total	1138	100%						

Tabla 21 Tasa de crecimiento Vehicular.

Tasa de cresimiento Vehicular										
Tasa de cresimiento	Livianos	Buses	Camiones							
2020-2025	4,21	2,24	2,52							
2025-2030	3,75	1,99	2,24							
2030-2035	3,37	1,80	2,02							
2035-2040	3,06	1,63	1,84							

Elaborado por: López y Salazar (2022).

Tabla 22 Proyección a 20 años- TPDA.

Año	n	Crec %	Livianos	Crec %	Buses	Crec %	Camiones	Total
2021	0	4,21	986	2,24	109	2,52	61	1156
2022	1	4,21	1028	2,24	111	2,52	63	1201
2023	2	4,21	1071	2,24	113	2,52	64	1248
2024	3	4,21	1116	2,24	116	2,52	66	1298
2025	4	4,21	1163	2,24	119	2,52	67	1349
2026	5	3,75	1212	1,99	121	2,24	69	1402
2027	6	3,75	1257	1,99	124	2,24	71	1451
2028	7	3,75	1304	1,99	126	2,24	72	1503
2029	8	3,75	1353	1,99	129	2,24	74	1556
2030	9	3,75	1404	1,99	131	2,24	75	1611
2031	10	3,37	1457	1,80	134	2,02	77	1668
2032	11	3,37	1506	1,80	136	2,02	79	1721
2033	12	3,37	1557	1,80	139	2,02	80	1775
2034	13	3,37	1609	1,80	141	2,02	82	1832
2035	14	3,37	1663	1,80	144	2,02	84	1890
2036	15	3,06	1719	1,63	146	1,84	85	1951
2037	16	3,06	1772	1,63	149	1,84	87	2007
2038	17	3,06	1826	1,63	151	1,84	88	2066
2039	18	3,06	1882	1,63	154	1,84	90	2126
2040	19	3,06	1940	1,63	156	1,84	92	2187
2041	20	3,06	1999	1,63	159	1,84	93	2251

Una vez determinado el tráfico promedio diario anual, se procede a verificar en la siguiente tabla del Ministerio de Obras Públicas en la cual se establece el orden de la vía, la velocidad de diseño y clase de pavimento, etc.

NORMAS	NORMAS CLASE I 3 000 – 8 000 TPDA ⁽¹⁾					CLASE II 1 000 - 3 000 TPDA				CLASE III 300 - 1 000 TPDA ⁽¹⁾					CLASE IV 100 - 300 TPDA ⁽¹⁾					CLASE V MENOS DE 100 TPDA ⁽¹⁾					
NORMAG		O I	ABLE M	LL			MEND		LL O			ON		ABSOLUT		COME		M LL		I M	RECON			BSOLL	
locidad de diseño (K.P.H.)		100	80	100		100	90	70	90 80	50	90	80 6									60 S0 40 S0 3				
lio mínimo de curvas horizontales (m)			210	350			275	160	275 216																
tancia de visibilidad para parada (m)	180		110	160		160	135		135 116			110 7				10 7		\$5 70					10 5	5 35	
tancia de visibilidad para rebasamiento (m.		690	565	690	565 415	690			640 563		540	565 41		65 415 2		80 29	0 2	10 29	0 150	110	290	210 1	50 21	100.50	
alte		-) = 10%	1000	-		-								8% (Par		OKP.	H)	
eficiente "K" para: (2)																									
ryas verticales convexas (m)	80	60	28	60	28 12	60	43	19	43 28	7	43	28 1	2 :	28 12	4	28 1	2	7. 12	1 3	2	12	7	4 7	7 3	
ryas verticales cóncavas (m)	43	38	24		24 13	38	31	19	31 24	10	31	24 1	3	24 13	6	24 1	1	10 13	1 5	3	13	10	6 1	0.5	
idiente longitudinal (3) máxima (%)	3	4	6		5 7	3	4	7	4 6	8	4	6 3	7		9	5 6		8 6	8	12	5		8 6	5 8	
idiente longitudinal (4) minima (%)	-	-	-			-		-	4 0		-	0.5		0 1						1.2				2.1.00.	
cho de pavimento (m)		7.3			7.3	•	7.0		6.7	3		5.70		6.00		6.00					4.00 (%)				
use de pavimento	Carpe	eta A	sfältic	ay Ho	rmigón		Carr	seta A	sfältica		Carp	eta Asti	altica	o D.T.S.B		D.T.S.B, Capa Granular o Empedrado				ro	Capa Granular o Empe			mpedra	
cho de espaldones (5) estables (m)	3.0	2.5	2.0	2.5	2.0 1.5	3,0	2.5	2,0	2,5 2,6	1.5	2.0	1,5 1.	.0 1	.5 1.0),5	0,60 (C.V. Tipo 6 y 7))						
adiente transversal para pavimento (%)			2,6					2,0					2,0			2,5 (C.V. Tipo 6 y 7) 4,0 (C.V. Tipo 5 y SE)			4,0						
adiente transversal para espaldones (%)		2.	(6)	- 4.0		_		275	1.0			2,0	- 4	.0		4.0 (C.V. Tipo 5 y 5E)				***					
rva de transición									USI					O SEA N		RIO									
Carga de diseño												: HS													
Puentes Ancho de la calzada (m)						SI	ERA L	A DIN	MENSIO	DE L				A VIA INC	LUID	OS LO	S ESI	PALDO	NES						
Ancho de Aceras (m) (7)														eada lado											
Mínimo derecho de vía (m)														del Reglas		plicati	vo de	dicha I	.ey						
1) EL TPOA indicado es el volumen promedi (Las normas para esta serán parecidas a considerarse el número de vehiculos egu? 2) Longitud de las curvas veritcales: L = K / donde V es la velocidad de diseño expre 3) En longitudes cortas menores a 500 m. s/V) se puede aumentar la gradiente en 14 3) Es puede adoptar una gradiente longitue 5) Espaldon payimentado con el mismo matri.	las de la ivalentes k, en don sada en k e puede % en terr inal de (erial de l	de K de K dilómo aume renos 0% er a cap	e I, co etros p entar I ondu n relle a de r	n veloc ficiente por hor a gradi lados y nos de odadur	respect a. ente en 1 3% en t 1 m. a	ivo y A 1% en t errenos 6 m. de ia. (Ver	errenos monta e altura Seccio	c.P.H. rencia s ondi añoso , prev nes T	más para algébrica ulados y i s, para lo rio análisi	clase d de gra 2% en t ngitude s y justi	dientes errenos s meno ficación	express montañ es a 75	ado e losos O m.	iones trans en tanto po , solament	versal r cient e para	es tipica o. Long las carr	as par itud r	mínima us de Cla	de cui	es. Par rvas ve II y III.	a el dise rticales: Para Car	no defii L mín = ninos V	nitivo = 0,60 ecinale	debe 0 V, er les (C	

Ilustración 9 Valores de diseño recomendados para carreteras de dos carriles y caminos vecinales de construcción.

Fuente: Ministerio de Obras Públicas

Se utiliza la tabla emitida por el ministerio de transporte y obras públicas, nos da como resultado una vía de clase II con normas de diseño a seguir, de estilo (O) ondulada con un proyectado a 20 años de 2251 vehículos. Las características de la vía se dan por recomendable y absoluta las cuales se detallen paso a paso.

- 1. Velocidad de diseño: Esta será en lo recomendable de 90 y en lo absoluto de 80.
- 2. Radio mínimo de curvatura horizontal (m): El recomendable seria de 275 y el absoluto de 210.
- 3. Distancia de visibilidad para parada (m): Este sería de 135 en lo recomendable y 110 en lo absoluto.
- 4. Peralte.
- 5. Curvas verticales convexas (m): Estaría dentro de lo recomendable en 43 y en lo absoluta de 28.
- 6. Curvas verticales cóncavas (m): En lo recomendable estaría el valor de 31 y en lo absoluto de 24.

- 7. Gradiente máxima (%): El porcentaje de gradiente en lo recomendable es de 4% y en lo absoluto es del 6% y la mínima es del 0,5%.
- 8. Ancho de pavimento (m): Este sería de 7 metros en recomendable y de 6,70 en absoluta.
- 9. Clase de pavimento: Se recomienda carpeta asfáltica para la vía.
- 10. Ancho de espaldones (m): Tendrá 2,5m en la parte recomendable y 2m en lo absoluto.
- 11. Gradiente del pavimento (%): Este seria 2% y para espaldones del 2% en recomendable y 4% es absoluta.

Se puede interponer una gradiente del 0% en rellenos de 1m a 6m de altura, previo a estudios realizados con una justificación aceptable.

3.5.3 El tercer objetivo específico que indica.

Establecer un diseño de mezcla asfáltica para la vía "Puerto pechiche y cruce a Vinces - Mocache", cantón Puebloviejo, provincia de Los Ríos.

3.5.3.1 Diseño de pavimento.

La decisión de pavimentar una vía en particular se debió al hecho de que necesitaba ser pavimentada cuando TPDA > 300. Los criterios más avanzados incluían considerar la pavimentación como una inversión de capital y ver si la sociedad se beneficiaría más que la inversión de la acción o no. El diseño del pavimento es adecuado para el tráfico interno del proyecto, comenzando con el muestreo de la subrasante y subsuelo existente, en el cual se han encontrado y descrito hasta el momento diferentes capas de suelo de 2.40m de profundidad.

Observe que la excavación está en la posición correcta de la línea de diseño. La muestra se analiza en un laboratorio donde se determinan parámetros que pueden caracterizar y evaluar los aspectos mecánicos del proceso de formación de la muestra. En el caso de la construcción de carreteras, el espesor de la capa de pavimento existente debe considerarse como una subrasante mejorada. Terreno vía puerto pechiche Mocache cruce Vinces.

3.5.3.2 Cálculo De Ejes Equivalentes O Esal'S

El periodo de diseño que se ha elegido es a una proyección de 20 años por los cuales se han tomado varios factores para el cálculo respectivo:

• Considerando que en dicha vía circulan 660 vehículos diarios, tránsito de livianos, buses, pesados de 2 ejes y de 3 ejes.

- Se consideró varios factores como un coeficiente de 365 que equivalen a los días del año, la vía de diseño de 2 carriles con un (D) 50% de diseño, 50% de camiones (T) y con una distribución de tránsito por factor de carril (L) del 100%.
- Los factores para los vehículos fueron en las unidades simples de 0,006 livianos de cuatro llantas, 0,23 2 buses, 2 ejes de 0,76 y de 3 ejes de 0,46.

Para una tasa de crecimiento del 2%, la vía presentará un crecimiento del tráfico de:

$$GF = [(1 + 0.02)^{10} - 1] / 0.02 = 10.94$$
 (para diez años)

$$GF = [(1 + 0.02)^{20} - 1] / 0.02 = 24.30$$
 (para veinte años).

3.5.3.3 Terreno de fundación

Sirve como base del pavimento y permanece después de la finalización del movimiento de tierras, y el espesor del pavimento depende en gran medida de su capacidad de carga. Por tanto, si el material del sustrato es de mala calidad (materia orgánica), se debe desechar y sustituir por otro material de mejor calidad.

- Si el sustrato es débil y tiene mucho barro o arcilla que tiende a saturarse, colocar un material blando.
- Si el sustrato es regular o bueno, es decir, está hecho de suelo de buena calidad que no está críticamente saturado, es posible que no se necesite el sustrato.
- Si el sustrato es bueno, es decir, tiene un alto valor de soporte y no es probable que se sature, se debe aplicar una imprimación granular regular antes de la aplicación del abrasivo.

Tabla 23 CBR y su clasificación.

CBR	Calificación
0 - 3	Subrasante mala
3 - 7	Subrasante regular
7 - 20	Subrasante regular a buena
20 - 30	Subrasante muy buena
30 - 50	Sub - base buena
50 - 100	Base buena

CBR es una medida indirecta de la resistencia al corte del suelo a una humedad y densidad determinadas, expresada como la tensión requerida para introducir un émbolo de 2 pulgadas en una muestra de 6 pulgadas y 7 pulgadas, en relación con cuando se ejecuta el mismo émbolo en el estándar. Solicitud de la misma profundidad.

Se tomó como base de CBR el 8% con una clasificación de regular o buena.

3.5.3.4 Determinación Del Módulo Resiliente (Mr3)

El módulo elástico que representa la relación entre el esfuerzo de deflexión y la deformación recuperable se obtiene en ensayos triaxiales dinámicos cuando es difícil determinar el MR. AASHTO utiliza las siguientes correlaciones para determinar el MR:

MR = 1500(CBR) CBR < 10%

MR = 3000(CBR) ^0.65 10% < CBR < 20%

MR = 4326 X Ln (CBR) + 241 Suelos granulares

MR= 1500 * 8%= 12000 lbs/pulg2

3.5.3.5 Desviación Estándar para pavimentos flexibles

Se define como el factor de seguridad que se tiene en cuenta. Determine las predicciones de errores en función de las pruebas empíricas realizadas en la pista de pruebas de AASHTO. En el caso de un pavimento elástico, considere el valor de la desviación estándar:

 $S_0 = 0.45$

3.5.3.6 Perdida de serviciabilidad:

Este parámetro estipula que el índice de serviciabilidad del pavimento elástico en la primera fase del nuevo uso de la vía es de 4,0 y al final del período de uso del pavimento, este índice puede alcanzar el nivel mínimo permitido de 2,0. Para la carretera secundaria, la última estimación para Ecuador es 2,0. En el proyecto actual, la pérdida de utilidad es:

 $\Delta PSI = P_0 - P_f = 4.0 - 2.0 = 2.0$

3.5.3.7 Confiabilidad.

Se define como la probabilidad de que la serviciabilidad del pavimento se mantenga en un nivel apropiado desde el punto de vista del usuario durante la vida útil del pavimento. Por lo tanto, hay factores que deben tenerse en cuenta para garantizar que los cambios, como las previsiones de tráfico actuales y futuras, se mantengan en un nivel de seguridad adecuado.

Tabla 24 Niveles de Confiabilidad.

Niveles de Confiabilidad

Tipo de Camino	Confiabilidad Recomendada							
ripo de Carrino	Zona Urbana	Zona Rural						
Rutas interestales y autopistas	85 a 99.9	80 a 99.9						
Arterias principales	80 a 99	75 a 99						
Colectoras	80 a 95	75 a 95						
Locales	50 a 80	50 a 80						

Elaborado por: López y Salazar (2022).

La Tabla enumera los niveles de seguridad para diferentes tipos de caminos, tanto urbanos como rurales. El valor medio de los caminos rurales se utiliza para este análisis de caminos. Tome el promedio del 75% al 95% de los valores, es decir:

$$R = 85\%$$

Número estructural

Considerando:

- > W₁₈ = 91071
- ightharpoonup R = 85%
- > S₀ = 0,45
- ightharpoonup Mr = 12.000 psi
- \rightarrow $\Delta PSI = 2.0$

Ecuación AASHTO 93	- 🗆 X
Tipo de Pavimento	Confiabilidad (R) y Desviación estándar (So)
Pavimento flexible C Pavimento rígido	85 % Zr=-1.037 So 0.45
Serviciabilidad inicial y final	Módulo resiliente de la subrasante
PSI inicial PSI final 2	Mr 1200 psi
- Información adicional para pavimentos rígidos-	
Módulo de elasticidad del concreto - Ec (psi)	Coeficiente de transmisión de carga - (J)
Módulo de rotura del concreto - Sc (psi)	Coeficiente de drenaje - [Cd]
Tipo de Análisis	Número Estructural
© Calcular SN W18 = 910	SN = 4.30
C Calcular W18	3 N - 4,30
Calcular	Salir

Ilustración 10 Ecuación AASHTO 93.

Componentes de un pavimento		Coeficientes	(3)
	a_1	a,	a ₃
Capa de rodamiento			
Mezcla en sitio (estabilidad baja) Mezcla en planta (estabilidad alta) Arena asfalto	0.20 0.44* 0.40		
Capa Base		1	
Grava arenosa Piedra picada Base tratada con cemento		0.07 (2) 0.14*	
(no un suelo-cemento): 650 b/pulg³, o más (1) 400 a 650 400 ", o menos	1	0.23 (2) 0.20 0.15	
Base tratada con material bituminoso: De gradación gruesa Arena safalto Base tratada con cal		0.30 (2) 0.25 0.15-0.30	
Sub-base	D 6		
Grava arenosa Arena o arcilla arenosa			0.05-0.10

Ilustración 11 Espesores Di de Pavimento capas.

Elaborado por: López y Salazar (2022).

Tabla 25 Capas de Pavimento.

Capas de Pavimento	ai	m _i	$\mathbf{D_{i}}$	SN
Capa de rodadura de				
concreto asfáltico. Mezclado	0.44			
en planta y caliente. Tipo A				
Base Clase 1	0.14	1.15		
Sub-Base Clase 1	0.11	1.15		
Total, en 20 años				

Se recomienda para el cálculo que el valor mínimo utilizado por la AASHTO, como espesor de la capa de rodadura sea de 4" – D1

Para la Base de conformidad con el tráfico, el espesor mínimo será de 6" - D2

$$4,30 = 0,44D1 + (0,14) D2(1.15) + 0,11D3(1,15)$$

 $4,30 = 0,44(4) + 0,16(6) + 0,12D3$
 $4,30 = 1,76 + 0,96 + 0,12D3$
 $D3 = 4,30 - 2,72$
 $0,12$
 $D3 = 14,0$ " Sub-Base

Para evitar la fatiga a la base, disminuimos el espesor de la subbase y se aumenta la Base.

Conforme recomendación de la AASHTO:

BASE
$$\approx 0.75$$
 de la Subbase.
 $4,39 = 0,44\text{D1} + (0,14) \text{ D2}(1.15) + 0,11\text{D3}(1,15)$
 $4,30 = 0,44(4) + 0,16(10,0) + 0,12\text{D3}$
 $4,30 = 1,76 + 1,60 + 0,12\text{D3}$
D3 = 4,30 - 3,36
0,12

D3 = **11,0**" **Sub-Base**

D2 – 8,0" Base

3.5.3.8 METODOLOGIA MARSHALL PARA DISEÑO DE PAVIMENTO

Lo definimos dentro del trabajo realizado en el laboratorio en 16 pasos:

1. Clasificamos los materiales:

Ilustración 12 Clasificación de Materiales.

- 2. Con 9,5mm del molde de compactación se utiliza la tabla para la mezcla, y se determina que la mejor composición es del:
 - 100% de 3/8
 - 55% al 85% del tamiz No 4
 - 32% al 67% del tamiz No 8
 - 7% 23% del No 50
 - 2% al 10% del No200
 - Fondo del 5% 12%.

	150 C C C C C C C C C C C C C C C C C C C	o en sitio 05-4.1)	Mezclado en Planta MOP(405-5.1)					
TAMIZ	3/8 " (9,5mm)	1/4 " (6,3mm)	3/4 "(19,0mm)	1/2 " (12,7mm)	3/8 " (9,5mm)	N° 4 (4,75mm)		
1" (25,4mm)	100 💉		100		v			
3/4 "(19,0mm)			90 - 100	100		******		
1/2 " (12,7mm)				90 - 100	100			
3/8 " (9,5mm)	90 - 100	100	56 - 80		90 - 100	100		
1/4 " (6,3mm)	55 - 75	85 - 100						
N° 4 (4,75mm)	30 - 50		35 - 65	44 - 74	55 - 85	80 - 100		
N° 8 (2,36mm)	15 - 32	15 - 32	23 - 49	28 - 58	32 - 67	65 - 100		
N°16 (1,18mm)	0 - 15	0 - 15		******		40 - 80		
N°30 (0,60mm)	0 - 3	0 - 3	******			25 - 65		
N°50 (0,30mm)			5 - 19	5 - 21	7 - 23	7 - 40		
N°100 (0,15mm)						3 - 20		
,	0 15	0 -20	2 - 8	2 - 10	2 - 10	2 - 10		

Ilustración 13 Granulometría – Tamaño Máximo de los Agregados.

3. Con 1250 gramos se necesitaría para el primer molde de material 1200 para una mezcla del 4% con 50 gramos de asfalto, con 21 muestras a realizar seria en un total de 26250 gramos en total, se realiza tabla para los agregados con el porcentaje requerido para la fabricación para cada briqueta.

Tabla 26 Porcentaje de agregados para la elaboración de briquetas.

PROBETA	4,0%	4,5%	5,0%	5,5%	6,0%	6,5%	7,0%
1"	0	0	0	0	0	0	0
3/4"	0	0	0	0	0	0	0
3/8"	288	289	288	286	284	283	282
n4	228	227	226	225	224	223	221
n8	312	307	305	303	302	300	299
n50	156	155	154	153	152	151	151
n100	204	201	200	199	198	197	196
fondo	12	15	15	15	15	15	14
TOTAL (g)	1200	1194	1188	1181	1175	1169	1163

4. Se procede a clasificar los materiales, en la maquina tamizadora.

Ilustración 14 Clasificación de los agregados en función de los tamices según la normativa ASTM C 136

Elaborado por: López y Salazar (2022).

5. Se pesan los agregados y se revisa la tabla para que este dentro de la clasificación.

Ilustración 15 Peso de los agregados finos y gruesos.

6. Se procede a calentar el asfalto.

Ilustración 16 Calentamiento del cemento asfaltico para el previo análisis.

Elaborado por: López y Salazar (2022).

Ilustración 17 Calentamiento del cemento asfaltico para el previo análisis.

7. Se realiza la mezcla de la composición de la briqueta calentando y mezclando el asfalto.

Ilustración 18 Colocación de los agregados y el cemento asfaltico

Elaborado por: López y Salazar (2022).

Ilustración 19 Mezcla de todos los agregados, junto con el cemento asfaltico.

Ilustración 20 Resultado final de la mezcla para su posterior compactación.

8. Se procede a darle 75 goles a la briqueta con el martillo Marshall.

Ilustración 21 Compactación de la briqueta utilizando un martillo de 10 lb y a una altura de 18".

9. Se retira la briqueta y se procede a verificar la altura de las probetas.

Ilustración 22 Resultado final de la compactación realizada.

Elaborado por: López y Salazar (2022).

10. Se pesan en el aire las briquetas.

Ilustración 23 Peso de las briquetas en seco

11. Se sumergen por 20 minutos en el agua y se procede a pesar.

Ilustración 24 Briquetas sumergidas en el agua.

Elaborado por: López y Salazar (2022)

12. Se pesan sumergidas en el agua y también se pesan secas.

Ilustración 25 Peso de la briqueta en el agua

Ilustración 26 Lectura del peso de la briqueta en seco.

13. Se sumergen las briquetas en un horno precalentado a 60 grados centígrados a baño maría.

Ilustración 27 Baño maría de las briquetas, durante 40 minutos.

14. Se saca el volumen con el saturado superficialmente seco menos lo pesado en el agua, con este volumen de la briqueta se da el factor de corrección.

Ilustración 28 Lectura del peso de la briqueta luego de baño maría.

Elaborado por: López y Salazar (2022).

15. Se pone en la máquina de compresión universal para medir la densidad y el flujo.

Ilustración 29 Dispositivo utilizado para realizar las pruebas de estabilidad.

Volumen de la briqueta cm³	Espesor aproximad o de la briqueta en cm	Factor de corrección
200-213	2.54	5.56
214-225	2.70	5.00
226-237	2.86	4.55
238-250	3.02	4.17
251-264	3.17	3.85
2.65-276	3.33	3.57
277-289	3.49	3.33
290-301	3.65	3.03
302-316	3.81	2.78
317-328	3.97	2.50
329-340	4.13	2.27
341-353	4.29	2.08
354-367	4.44	1.92
368-379	4.60	1.79
390-392	4.76	1.67
393-405	4.92	1.56

Volumen de la briqueta cm³	Espesor aproximado de la briqueta en cm	Factor de corrección
406-420	5.08	1.47
421-431	5.24	1.39
432-443	5.40	1.32
444-456	5.56	1.25
457-470	5.71	1.19
471-482	5.87	1.14
483-495	6.03	1.09
496-508	6.19	1.04
509-522	6.35	1.00
523-535	6.51	0.96
536-546	6.67	0.93
547-559	6.82	0.89
560-573	6.98	0.86
574-585	7.14	0.83
586-598	7.30	0.81
599-610	7.46	0.78
611-625	7.62	0.76

Ilustración 30 Factor de corrección en función de la altura de las briquetas.

Con todos los datos obtenidos se procede a realizar el cálculo para el mejor diseño de asfalto, con una composición de vacíos entre el 3% y el 5%, con los resultados se dieron que la mezcla más idónea es del 5% de asfalto.

Tabla 27 Diseño de Concreto Asfaltico por el Método Marshall.

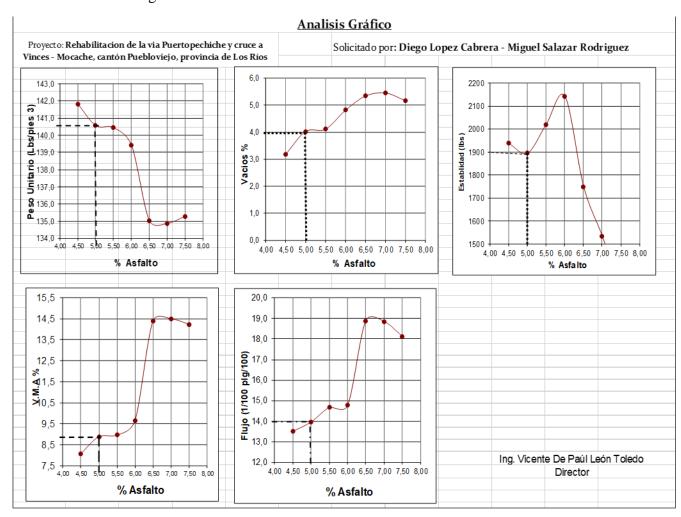
				DISENO D	E CONCRE	IO ASFAL	TICO - METODO) DE MARSHAL	L	
-										Hoja: 1/4
Proyecto: Solicita:			BILITACION DE LA EL SALAZAR - DIEC		TO PECHIO	CHE CRUC	E A VINCES - M	OCACHE		
Soncita: Fecha:	ı	WIGUE	ENERO DE 2022							
cona.	DA	TOS:	ENERG DE LOLI							
χ	ASFALTO	1,010	Kg / m3	0,00101	g/cm3		k del aniloMarshall	4,3804		
χ	AGREGAD	2,376	Kg / m3	0,002378	g / cm3					
% ABSORCI	ON =	1,86 %								
PENETRACIO	ON =	0,0098	mm							
		DE		SO (gr)		VOLUMEN	MEZCLA	PESO DEL	VOLUMEN TOTAL	% ASFALTO
			SATURADO		AGUA (gr)	(cm ³)	COMPACTADA	ASFALTO	ASFALTO	ABSORCION
MUESTRA	# ASFAL	.TO %	SUPERFICIALMENTE	AIRE (gr)		(A)-(C)	BULK (gr / cm ³)	(gr)	(cm3)	(((E*100) -(F))*%Absorc))/100*&100
			SECO (gr)	(B)	(C)	(D)	(B)/(D)	(E)* % ASFALTO	(F)/ χ _{ASFALTO}	100* χ ASFALTO
			(A)	(5)	(0)	(5)	(E)	(F)	(G)	(H)
1	4,0	00	1111,6	1116,0	617,1	494,5	2,257	9,03	8,94	4,07
2	4,0	00	1195,0	1198,0	670	525	2,282	9,13	9,04	4,12
3	4,0	00	1183,7	1179,0	668	515,65	2,286	9,15	9,06	4,12
PROMEDI	10						2,275	9,10	9,01	4,10
1	4,5	50	1192,0	1197,0	667,2	524,8	2,281	9,12	9,03	4,11
2	4,5	50	1156,0	1158,8	642,7	513,3	2,258	9,03	8,94	4,07
3	4,5	50	1162,3	1159,0	641,8	520,5	2,227	8,91	8,82	4,02
PROMEDI	10						2,255	9,02	8,93	4,07
1	5,0	00	1096,0	1100	608,7	487,3	2,257	9,03	8,94	4,07
2	5,0	00	1182,0	1190,0	659,2	522,8	2,276	9,10	9,01	4,11
3	5,0	00	1186,1	1188	652,3	533,8	2,226	8,90	8,81	4,01
PROMEDI	10						2,253	9,01	8,92	4,06
1	5,5	50	1222,0	1225	675,2	546,8	2,240	8,96	8,87	4,04
2	5,5	50	1191,2	1190,0	658,2	533	2,233	8,93	8,84	4,03
3	5,5	50	1192,3	1192	659,3	533	2,236	8,95	8,86	4,03
PROMEDI	10						2,236	8,95	8,86	4,03

Tabla 28 Diseño de Concreto Asfaltico por el Método Marshall.

												Hoja: 2/4
	Proyecto:		REHA	BILITACION I	DE LA VIA PUER	TO PECHICH	IE CRUCE	A VINCES - MO	CACHE			
	Solicita:	٨	MIGUEL SALA	ZAR - DIEGO	LOPEZ							
	Fecha:		ENER	O DE 2022								
	DAT	ros:										
	χ asp	1,010	Kg / m3	0,00101	g / cm3			k del aniloMarshall	4,3804			
	χ agr	2,378	Kg / m3	0,002378	g / cm3							
	% ABSORCION =	1,86	%									
	PENETRACION =	0,0098	mm									
% ASFALTO EFECTIVO	AGREGADO		VACIOS (Va)	V. m.a. (%)	PESO UNITARIO DE LA MUESTRA	Deformación Dial	ESTA	BILIDAD MARSHAL	L (libras)	FLWO		
(G)-(H)	((E)*100)-((G)-χ	ASFALTO)	100- (I) - (J)	100- (J)	(lib*pie ³)		MEDIDA	FACTOR DE	CORREGIDA	Pulg/100	ASFALTO %	
(=) ()	χago	3	(., (.,	(-,	(E)*0,06234		↓	CORRECCION				
(1)	(J)		(K)	(L)	(M)		(N)	(0)	(P)	(Q)		
4,87	91,18		3,95	8,8	140,69	452,00	1980	1,09	2158	14,06	4,50	
4,92	92,20		2,88	7,8	142,25	448,00	1962	0,96	1884	12,7	4,50	
4,93	92,38		2,69	7,6	142,54	435,00	1905	0,93	1772	13,78	4,50	
4,91	91,92		3,17	8,1	141,83		1949		1938	13,51		
4,92	92,16		2,92	7,8	142,19	480,00	2103	0,96	2018	12,50	5,00	
4,87	91,21		3,92	8,8	140,73	425,00	1862	1,00	1862	15,2	5,00	
4,80	89,97		5,23	10,0	138,81	412,00	1805	1,00	1805	14,2	5,00	
4,86	91,11		4,02	8,9	140,58		1923		1895	13,97		
4,87	91,21		3,93	8,8	140,72	498,00	2181	1,09	2378	14,00	5,50	
4,91	91,97		3,12	8,0	141,90	432,00	1892	0,96	1817	15,50	5,50	
4,80	89,92		5,28	10,1	138,74	458,00	2006	0,93	1866	14,50	5,50	
4,86	91,03		4,11	9,0	140,5		2027		2020	14,67		
4,83	90,52		4,65	9,5	139,66	525,00	2300	0,88	2024	14,60	6,00	
4,82	90,21		4,98	9,8	139,18	518,00	2269	0,96	2178	14,80	6,00	
4,82	90,36		4,82	9,6	139,42	530,00	2322	0,96	2229	14,90	6,00	
4,82	90,36		4,81	9,6	139,4		2297		2144	14,77		

Tabla 29 Diseño de Concreto Asfaltico por el Método Marshall.

			L	DISEÑO DE	CONCRET	O ASFÁLT	ICO - METODO	DE MARSHAL	L	
Drawasta		DEUA	BILITACION DE LA	VIA DUEDI	TO DECUIO	UE CDUCE	A VINCES M	OCACUE		3/4
Proyecto: Solicita:			EL SALAZAR - DIE		O PEUNIC	HE CRUCE	A VINCES - IVI	UCACHE		
Fecha:		WIGOL	ENERO DE 202							
i cuia.		DATOS:	LNLKO DL 202	_						
χ	ASFALTO	1,010	Kg / m3	0,00101	g / cm3		k del anilloMarshall	3.413		
χ	AGREGAD	2,378	Kg / m3	0,002378	g/cm3					
% ABSORC	ION =	1,86	%							
PENETRAC	ION =	0,0098	mm							
			DE	SO (gr)		VOLUMEN	MEZCLA	PESO DEL	VOLUMEN TOTAL	% ASFALTO
		ASFALTO %	SATURADO			(cm ³)	COMPACTADA	ASFALTO	ASFALTO	ABSORCION
MUESTRA	#		SUPERFICIALMENTE	AIRE (gr)	AGUA (gr)		BULK (gr / cm ³)	(gr)	(cm3)	(((E*100) -(F))*%Absorc))/100*&1000
			SECO (gr)	(B)	(C)	(D)	(B)/(D)	(E)* % ASFALTO	(F)/ χ _{ASFALTO}	100* χ ASFALTO
			(A)	(5)	(0)	(5)	(E)	(F)	(G)	(H)
1		6,00	1217,6	1220,2	668	549,6	2,220	13,32	13,19	3,92
2		6,00	1187,4	1179,8	636	551,4	2,140	12,84	12,71	3,78
3		6,00	1187,2	1180,6	635	552,2	2,138	12,83	12,70	3,78
PROMED	OIO						2,166	13,00	12,87	3,82
1		6,50	1229,2	1232,0	665	564,2	2,184	13,10	12,97	3,86
2		6,50	1185,8	1180,5	638,45	547,35	2,157	12,94	12,81	3,81
3		6,50	1187,1	1181,3	637,58	549,52	2,150	12,90	12,77	3,80
PROMED	OIO						2,163	12,98	12,85	3,82
		7,00	1245,0	1247	682	563	2,215	13,29	13,16	3,91
		7,00	1193,5	1187,4	641,5	552,0	2,151	12,91	12,78	3,80
		7,00	1194,8	1188,8	640,3	554,5	2,144	12,86	12,74	3,79
PROMED	DIO						2,170	13,02	12,89	3,83


Tabla 30 Diseño de Concreto Asfaltico por el Método Marshall.

												4/4
	Proyecto:				IA PUERTO PEC	HICHE CR	UCE A VIN	CES - MOCACH	IE			
	Solicita:		MIGUEL SALA		LOPEZ							
	Fecha:		ENER	O DE 2022								
	DAI								4.0004			
	X ASF	1,010	Kg / m3	0,00101	g / cm3			k del aniloMarshall	4,3804			
	χ AGR	2,378	Kg / m3	0,002378	g / cm3							
	% ABSORCION =	1,86										
	PENETRACION =	0,0098	mm									
6 ASFALTO	AGREGADO	O VACIOS (Va)		V. m.a. (%)	PESO UNITARIO DE LA MUESTRA	Deformación Dial	ESTA	BILIDAD MARSHALI	_ (libras)	FLWO		
	((E)*100) - ((G)- v	ASFALTO)			(lib*pie ³)	Diai		FACTOR DE			ASFALTO %	
G)-(H)	Y A G G		100- (I) - (J)	100- (J)	(E)*0,06234		MEDIDA	CORRECCION	CORREGIDA	0,01		
(1)	(1)		(K)	(L)	(M)		(N)	(0)	(P)	(Q)		
9,27	87,76		2,97	12,2	138,40	475,00	2081	0,89	1852	15,63	6,50	
8,93	84,58	84,58 6,49		15,4	133,39	445,00	1949	0,89	1735	20,3	6,50	
8,93	84,51		6,56	15,5	133,28	427,00	1870	0,89	1665	20,7	6,50	
9,04	85,62		5,34	14,4	135,0		1967		1750	18,88		
9,12	86,32		4,57	13,7	136,13	400,00	1752	0,86	1507	20,94	7,00	
9,00	85,25		5,74	14,7	134,45	398,00	1743	0,89	1552	17,80	7,00	
8,97	84,98		6,05	15,0	134,01	395,00	1730	0,89	1540	17,80	7,00	
9,03	85,52		5,45	14,5	134,86		1742		1533	18,85		
9,25	87,55		3,20	12,4	138,08	412,00	1805	0,86	1552	12,50	7,50	
8,98	85,02		6,00	15,0	134,09	310,00	1358	0,89	1209	20,40	7,50	
8,95	84,75		6,30	15,3	133,65	289,00	1266	0,89	1127	21,50	7,50	
9.06	85.77		5.17	14.2	135.3		1476		1296	18.13		

Tabla 31 Porcentajes para las muestras.

% de Asfalto	Peso Unitario de Ia Muestra	Vacios(Va)	Estabilidad Coregida	V.m.a. (%)	Flujo
4,50	141,8	3,2	1938	8,1	13,5
5,00	140,6	4,0	1895	8,9	14,0
5,50	140,5	4,1	2020	9,0	14,7
6,00	139,4	4,8	2144	9,6	14,8
6,50	135,02	5,34	1750	14,4	18,88
7,00	134,86	5,45	1533	14,5	18,85
7,50	135,27	5,17	1296	14,2	18,13

Tabla 32 Análisis de gráficos

4 Propuesta.

Valor Del Recapeo De La Vía Puerto Pechiche Y Cruce A Vinces-Mocache.

A continuación, se detalla un presupuesto referencial, para la rehabilitación de la vía Puerto Pechiche y cruce a Vinces Mocache, que mejorará las condiciones de servicio de la vía en la cual se beneficia los usuarios viales de esta manera contribuir al desarrollo económico del sector.

Valor referencial del costo de la vía.

Tabla 33 Presupuesto de la Vía Puerto Pechiche Mocache - Cruce a Vinces

	VIA PUERTO PEO	CHICHE MOC	HACHE - CRUCE VINCES				
RUBROS	DESCRIPCION	UNIDAD	SUB TOTAL COSTOS DIRECTOS	INDIRECTOS	P.U.TOTAL	CONTRATO	TOTAL
INGENERIA							
1.1	MOVILIZACION	GLOBAL	1800	396	2196	1	2196,00
1.2	PROVICION OFICINA Y CAMPAMENTO	GLOBAL	1800	396	2196	1	2196,00
1.3	DESMOVILIZACION	GLOBAL	1800	396	2196	1	2196,00
1.4	ENSAYOS DE PROCTOR Y ASFALTO	GLOBAL	1800	396	2196	1	2196,00
	EÇ	UIPOS Y MA	TERIALES				
2.1	ACERA	m2	16	3,52	19,52	440	8588,80
2.2	BORDILLO	m	6	1,32	7,32	220	1610,40
2.3	BASE CLASE 1	m3	38	8,36	46,36	1000	46360,00
2.4	CAPAS ASFALTICA e=2"	m2	8,1	1,782	9,88	69300	684822,60
2.5	RC 250	m2	1	0,22	1,22	69300	84546,00
		OBRAS CIV	/ILES				
3.1	REEPLANTEO Y NIVELACION	GLOBAL	3000	660	3660	1	3660,00
3.2	ASFALTO EN VIAS Y PLATAFORMA (EQUIPO ASFALTADOR	m2	1,25	0,275	1,525	69300	105682,50
3.3	RECONFORMACION DE BASE PARA ESTRUCTURA DE ASFALTO	m2	1,25	0,275	1,525	69300	105682,50
					TOTAL	GENERAL	1049736,80

5 CONCLUSIONES

- Para concluir con el primer objetivo específico, Establecer un diseño de mezcla asfáltica
 para la vía "Puerto pechiche y cruce a Vinces Mocache", cantón Puebloviejo,
 provincia de Los Ríos, se concluye que para identificar el estado actual de una vía se
 necesita de una topografía para asentar la vía con coordenadas WGS-84, para lo cual el
 recorrido se tendrá evidencia del estado actual de la vía, ya que es un recorrido de
 campo
- Para el segundo objetivo especifico Categorizar el tipo de vía Puerto pechiche y cruce a Vinces Mocache por medio de un tráfico promedio diario anual (TPDA), se determinó que la vía en estudio es de tipo II, con 2 "pulgadas de asfalto, que, además, con un cálculo proyectado a los 20 años, el cálculo de ejes equivalentes, el módulo de resilencia y el numero estructural se llegó a un mejor calculo; o en su defecto el correcto cálculo de la base y subbase.
- Para el tercer objetivo específico Establecer un diseño de mezcla asfáltica para la vía "Puerto pechiche y cruce a Vinces Mocache", cantón Puebloviejo, provincia de Los Ríos, para este punto se llevó a cabo un ensayo de laboratorio por medio de la metodología Marshall se llevó a cabo la mejor composición de asfalto, que éste fue del 5% para la vía en estudio.
- Para el objetivo general Analizar las condiciones de la carretera Puerto Pechiche y cruce a la vía Vinces Mocache para una correcta rehabilitación, se logró establecer por un recorrido por la carretera que esta tenía en tramos carencia de asfalto, y en parte también daños en la capa de rodadura, por lo cual, con una rehabilitación adecuada se podrá solucionar los problemas, dándole así a los usuarios un mayor beneficio para sus automóviles, así como los agricultores podrán sacar sus cultivos a comercializar en época lluviosa o invernal.

- Para la hipótesis planteada, la rehabilitación de dicha carretera mejorará la calidad de vida de los moradores del sector, en base a un levantamiento topográfico, obteniendo las condiciones actuales de la carretera, así como también de un Tráfico Promedio Diario Anual (TPDA) para establecer el tránsito real. Con todos estos datos recopilados se podrá determinar la mejor solución vial de la carretera Puerto pechiche y cruce a Vinces Mocache, se concluye que mediante la rehabilitación planteada, el nivel de serviciabilidad de la carretera hará que los automóviles no se queden averiados por irregularidades en la carpeta asfáltica, ayudando al medio ambiente y a la comunidad de Puerto Pechiche.
- Para finalizar, se concluye que a base del TPDA se determinó que la carretera es de clase II, y necesita una capa de rodadura de asfalto de 2 pulgadas mediante el recapeo integral, la cual se tiene, en promedio 7 metros de ancho y 9.9 kilómetros de longitud.

6 RECOMENDACIONES

- Se recomienda una correcta topografía para identificar la vía en estudio, así como georreferenciarla y determinar el estado actual en la que se encuentra.
- El TPDA es recomendado para todo tipo de vía en estudio, para identificar a qué tipo de clase pertenece la misma, así como la composición de los diferentes estratos de suelo y su carpeta asfáltica que debería llevar.
- Para finalizar, se recomienda que se debe realizar un ensayo para la composición de asfalto. En este estudio se llevó a cabo la metodología Marshall para llegar a la mejor composición de la carpeta asfáltica.

7 REFERENCIAS BIBLIOGRÁFICAS

- (s.f.). Obtenido de González, Gabriela. (14 de mayo de 2020). Técnicas de investigación. Lifeder. Recuperado de .
- Andrade, M., & Medina, K. (2021). Diseño de hormigon no tradicional . Obtenido de Diseño de hormigon no tradicional : http://repositorio.ulvr.edu.ec/bitstream/44000/4544/1/T-ULVR-3698.pdf
- Andrade, O., & Dayana, A. (2021). MORTERO DE FRAGUADO RÁPIDO, CON FIBRA DE COCO Y CERÁMICA RECICLADA PARA ENLUCIDOS INTERIORES DE EDIFICACIONES. Obtenido de MORTERO DE FRAGUADO RÁPIDO, CON FIBRA DE COCO Y CERÁMICA RECICLADA PARA ENLUCIDOS INTERIORES DE EDIFICACIONES: http://repositorio.ulvr.edu.ec/bitstream/44000/4528/1/T-ULVR-3684.pdf
- Ariana Valero Lozano. (MARZO de 2021). PROCESO CONSTRUCTIVO DE LA REHABILITACIÓN DE LA VÍA LOS ARENALES-LOS RANCHOS- LA BOCA DE LA PARROQUIA CRUCITA DEL CANTÓN PORTOVIEJO. Obtenido de http://repositorio.ug.edu.ec/bitstream/redug/53341/1/BMAT-GENE%20350-2021-Ing.CIVIL%20-%20VALERO%20LOZANO%20ARIANA%20VALENTINA.pdf
- ASOSIACIÓN DE PRODUCTORES DE HORMIGÓN PRE MEZCLADO DEL ECUADOR. (2007). INSTITUTO ECUATORIANO DEL CEMENTO Y EL CONCRETO. Obtenido de https://www.udocz.com/apuntes/28555/el-manual-de-pepe-hormigon-1
- Aulestia, A. (2020). Análisis de factibilidad del uso de fibra de coco en la fabricación de ladrillos decemento para construcciones de vivienda en el Ecuador. Obtenido de Análisis de factibilidad del uso de fibra de coco en la fabricación de ladrillos de cemento para construcciones de vivienda en el Ecuador: https://repositorio.uisek.edu.ec/bitstream/123456789/3907/1/Andr%c3%a9s%20Israel %20Aulestia%20Altamirano.pdf
- Bastidas, J., & Rondon, H. (2020). Caracterización de mezclas de concreto asfáltico. Obtenido de Caracterización de mezclas de concreto asfáltico: http://repository.unipiloto.edu.co/handle/20.500.12277/8146

- Bernal, C. (2010). Metodología de la investigación. Obtenido de Metodología de la investigación: https://abacoenred.com/wp-content/uploads/2019/02/El-proyecto-de-investigaci%C3%B3n-F.G.-Arias-2012-pdf.pdf
- Bryan Saldaña y Wyler Taipe . (2018). REHABILITACIÓN Y MEJORAMIENTO EN VIAS DE BAJO VOLUMEN DE TRANSITO A NIVEL TRATAMIENTO SUPERFICIAL SLURRY SEALCANAYRE- PUERTO PALMERAS -AYACUCHO. Obtenido de https://repositorio.usmp.edu.pe/bitstream/handle/20.500.12727/4545/saldana_taipe.pd f?sequence=1&isAllowed=y
- Castillo, M., & Fierro, J. (2018). HORMIGÓN DE ALTA RESISTENCIA CON NANOSÍLICE. Obtenido de HORMIGÓN DE ALTA RESISTENCIA CON NANOSÍLICE: https://www.dspace.espol.edu.ec/bitstream/123456789/46906/1/D-CD70336.pdf
- Castro, J. E. (2020). CARACTERIZACIÓN FÍSICO-MECÁNICA DE AGREGADOS PÉTREOS EXTRAÍDOS DE LOS RÍOS UPIN Y SALINAS UBICADOS EN EL MUNICIPIO DE RESTREPO META PARA LA APLICACIÓN DE BASES Y SUBBASES GRANULARES. Obtenido de https://repository.usta.edu.co/bitstream/handle/11634/30518/2020juansalas.pdf?seque nce=6&isAllowed=y
- Chavarry, G. (2018). ELABORACIÓN DE CONCRETO DE ALTA RESISTENCIA INCORPORANDO PARTÍCULAS RESIDUALES DEL CHANCADO DE PIEDRA DE LA CANTERA TALAMBO, CHEPÉN. Obtenido de ELABORACIÓN DE CONCRETO DE ALTA RESISTENCIA INCORPORANDO PARTÍCULAS RESIDUALES DEL CHANCADO DE PIEDRA DE LA CANTERA TALAMBO, CHEPÉN:
 - $https://tesis.usat.edu.pe/bitstream/20.500.12423/1340/1/TL_ChavarryBoyGuido.pdf.pdf$
- Chavez, J. (2019). "PROPIEDADES FÍSICO Y MECÁNICAS DEL ADOBE COMPACTADO CON INCORPORACIÓN DE FIBRAS DE. Obtenido de "PROPIEDADES FÍSICO Y MECÁNICAS DEL ADOBE COMPACTADO CON INCORPORACIÓN DE FIBRAS DE: https://repositorio.upn.edu.pe/bitstream/handle/11537/23572/Chavez%20Atalaya%20 Janeth%20Yolanda.pdf?sequence=1&isAllowed=y

- Christian Albán Feijóo y Juan José Avila . (2017). ESTUDIO DE TRAFICO,RE DISEÑO GEOMETRICO Y DISEÑO DE PAVIMENTOS DE LAS VIAS MARGINALES A LOS RIOS YUMAZA,GUALAQUIZA,CHURUYACU Y DE LA CALLE LOGROÑO DE LOS CABALLEROS EN LA PARROQUIA GUALAQUIZA. Obtenido de https://dspace.uazuay.edu.ec/handle/datos/6900
- Christian Azuero y Carlos Idrovo Pinos. (2018). DISEÑO GEOMETRICO Y DE PAVIMENTO DE LA VÍA PARCULOMA- YABRÚN CANTÓN GUALACEO. Obtenido de https://dspace.ucacue.edu.ec/handle/ucacue/8303
- CONSTITUCION DE LA REPUBLICA DEL ECUADOR. (2008). Obtenido de https://gobernacionloja.gob.ec/wp-content/uploads/downloads/2020/Juridico/CONSTITUCION%20DE%20LA%20REP UBLICA%20DEL%20ECUADOR.pdf
- Constitución de la Republica del Ecuador. (2008). Constitución de la Republica del Ecuador. Obtenido de https://www.oas.org/juridico/pdfs/mesicic4_ecu_const.pdf
- Esia Zacatenco. (Junio de 2015). Estudios de materiales calizos como agregados en mezclas calientes. Recuperado el Febrero de 2022, de https://www.uteycv.esiaz.ipn.mx/eBoletin/pdf/eboletin_31.pdf
- Ever Alejandro Palacios Acosta, Gabriel Antonio Troya Zamora y Ivo Humberto Estupiñan Arias. (2019). ANÁLISIS DE CORROSIÓN EN UN MATERIAL COMPUESTO DE RESINA POLIÉSTER Y FIBRA DE COCO. Obtenido de ANÁLISIS DE CORROSIÓN EN UN MATERIAL COMPUESTO DE RESINA POLIÉSTER Y FIBRA DE COCO: http://investigacionistct.ec/ojs/index.php/investigacion_tecnologica/article/view/19/13
- Gabriela González . (14 de Mayo de 2020). Tecnicas de investigación. Obtenido de https://www.lifeder.com/tecnicas-de-investigacion/.
- Garcia Rojas Jean Carlo y Inga Lopez Ronny David. (2020). VARIACION DE LAS PROPIEDADES MECANICAS OBTENIDAS DEL ENSAYO MARSHALL ENTRE LAS MEZCLAS ASFALTICAS TIBIAS PRODUCIDAS CON DIFERENTES TECNOLOGIAS Y LAS MEZCLAS ASFALTICAS EN CALIENTE . Obtenido de http://repositorio.urp.edu.pe/bitstream/handle/URP/3654/CIV-

- T030_45012443_T%20%20%20INGA%20LOPEZ%20RONNY%20DAVID.pdf?seq uence=1&isAllowed=y
- Garcia, J., & Morales, K. (2019). OBTENCIÓN Y CARACTERIZACIÓN DE UN MATERIAL COMPUESTO A BASE DE ALMIDÓN DE YUCA AMARGA (Manihot Esculenta) Y ENDOCARPIO DE COCO PULVERIZADO . Obtenido de OBTENCIÓN Y CARACTERIZACIÓN DE UN MATERIAL COMPUESTO A BASE DE ALMIDÓN DE YUCA AMARGA (Manihot Esculenta) Y ENDOCARPIO DE COCO PULVERIZADO : https://repositorio.unicordoba.edu.co/xmlui/bitstream/handle/ucordoba/2921/garciaalv arezjonathan-moralesescobarkaren.pdf?sequence=1&isAllowed=y
- Gomá, F. (1979). El cemento portland y otros aglomerantes. España: Editores Tenicos y asociados. Obtenido de El cemento portland y otros aglomerantes: https://books.google.es/books?hl=es&lr=&id=XDTMOk4Ggd0C&oi=fnd&pg=PP12 &dq=cemento+que+es&ots=qL5VwQzg6T&sig=k7hva7sdS5MHEmHEQTQH9GzE gzM#v=onepage&q=cemento%20que%20es&f=false
- Hernandez, Roberto; Fernandez, Carlos; Baptista, Maria. (2012). Metodologia de la investigacion. Obtenido de Metodologia de la investigacion: https://academia.utp.edu.co/grupobasicoclinicayaplicadas/files/2013/06/Metodolog% C3% ADa-de-la-Investigaci% C3% B3n.pdf
- Hinojosa, C., Pinilla, Y., Sanchez, S., Urrea, S., Ramirez, V., & Yulieth, C. (2018).

 CARACTERIZACIÓN FÍSICO-MECÁNICA DE LOS AGREGADOS PÉTREOS

 (MATERIALES DE ARRASTRE Y CANTERAS) DEL MUNICIPIO DE

 DOSQUEBRADAS. Obtenido de CARACTERIZACIÓN FÍSICO-MECÁNICA DE

 LOS AGREGADOS PÉTREOS (MATERIALES DE ARRASTRE Y CANTERAS)

 DEL MUNICIPIO DE DOSQUEBRADAS:

 https://repository.unilibre.edu.co/bitstream/handle/10901/17042/CARACTERIZACI
 %c3%92N%20FISICO
 MEC%c3%80NICA%20DE%20LOS%20AGREGADOS.pdf?sequence=2&isAllowe
 d=y
- Ingenieriaymas. (2021). Ensayo del Cono de Abrams Consistencia del hormigon. Obtenido de Ensayo del Cono de Abrams Consistencia del hormigon: https://ingenieriaymas.com/2016/09/ensayo-del-cono-de-abrams-consistencia.html

- Instituto Ecuatoriano de Normalización. (2011). Áridos para Hormigón. Obtenido de https://www.normalizacion.gob.ec/buzon/normas/872-1.pdf
- Jose Luis Pantoja Galvan. (2019). INFLUENCIA DE LA CORRECCIÓN DEL CBR DEL TERRENO DE FUNDACIÓN VIAL EN EL DISEÑO DE PAVIMENTOS PARA EL PROYECTO DE CONSERVACIÓN VIAL SANTA ROSA TRAMO DV. . Obtenido de https://repositorioslatinoamericanos.uchile.cl/handle/2250/2804154
- Jouve-Loor, A., Andrade, O., & Areche, J. (2021). Mortero con incorporación de fibra de coco y cerámica para acabados interiores de edificaciones. Obtenido de Mortero con incorporación de fibra de coco y cerámica para acabados interiores de edificaciones: https://polodelconocimiento.com/ojs/index.php/es/article/view/2564/5346
- Jové Sandoval. (2018). GFA / CONSTRUCCIÓN III (46833): MATERIALES Y ELEMENTOS CONSTRUCTIVOS. Obtenido de GFA / CONSTRUCCIÓN III (46833): MATERIALES Y ELEMENTOS CONSTRUCTIVOS: https://uvadoc.uva.es/bitstream/handle/10324/32423/C3T03_El%20Hormig%C3%B3 n_Jove,F(2018).pdf?sequence=1
- Julio Karin Pumayali Camacho. (2018).**MEJORAMIENTO** Gutierrez V REHABILITACIÓN DEL **CAMINO** VECINAL TRAMO:NOGALPAMBA PISCAYA, DISTRITO **COTARMA** PICHIRHUA, PROVINCIA **ABANCAY** REGIÓN APURIMAC. Obtenido de https://repositorio.utea.edu.pe/bitstream/utea/149/1/Mejoramiento%20y%20rehabilita ción%20del%20camino%20vecinal%20tramo%20Nogalpampa-Cotarma-Piscaya%2c%20Distrito%20Pichirhua.pdf
- LARA, G. (2017). DETERMINACIÓN DE LOS PORCENTAJES ÓPTIMOS DE FIBRA DE COCO EN HORMIGONES HIDRAULICOS . Obtenido de DETERMINACIÓN DE LOS PORCENTAJES OPTIMOS DE FIBRA DE COCO EN HORMIGONES HIDRÁULICOS
- LEY ORGÁNICA DE TRANSPORTE TERRESTRE TRÁNSITO Y SEGURIDAD VIAL. (10 de Agosto de 2021). Obtenido de https://portovial.gob.ec/sitio/descargas/leyes/ley-organica-transporte-terrestre-transito-y-seguridad-vial.pdf
- LEY SISTEMA NACIONAL DE INFRAESTRUCTURA VIAL TRANSPORTE TERRESTRE. (05 de Mayo de 2017). Obtenido de

- https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2018/06/LOTAIP_5_LEY-DE-INFRAESTRUCTURA.pdf
- Moreno, Y. (2021). Criterios de Implementación ISO 14001:2015 Caso de Estudio Sector Extracción de Materiales Pétreos de. Obtenido de Criterios de Implementación ISO 14001:2015 Caso de Estudio Sector Extracción de Materiales Pétreos de: https://repository.unad.edu.co/bitstream/handle/10596/40799/gyriosm.pdf?sequence= 1&isAllowed=y
- MTOP, M. d. (2013). MINISTERIO DE TRANSPORTE Y OBRAS PUBLICAS. Obtenido de MINISTERIO DE TRANSPORTE Y OBRAS PUBLICAS: https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2013/12/01-12-2013_Manual_NEVI-12_VOLUMEN_2A.pdf
- Ortega, J. (2015). Diseño De Estructuras De Concreto Armado-tomo I . Obtenido de Diseño De Estructuras De Concreto Armado-tomo I : https://idoc.pub/documents/diseo-de-estructuras-de-concreto-armado-tomo-i-ing-juan-ortega-jlk9e33xp745
- Reglamento General A La Ley Organica de Educación Superior . (06 de Junio de 2019).

 Obtenido de https://www.ikiam.edu.ec/documentos/normativa_externa/REGLAMENTO%20GEN ERAL%20A%20LA%20LEY%20ORGANICA%20DE%20EDUCACION%20SUPE RIOR.pdf
- Roberto Hernández, Carlos Fernández y Pilar Baptista. (2014). METODOLOGIA DE LA INVESTIGACION. Obtenido de http://observatorio.epacartagena.gov.co/wp-content/uploads/2017/08/metodologia-de-la-investigacion-sexta-edicion.compressed.pdf
- Roberto Hernandez, Carlos Fernandez, Pilar Batista. (2014). Documento sitio web. Obtenido de Documento sitio web: http://observatorio.epacartagena.gov.co/wp-content/uploads/2017/08/metodologia-de-la-investigacion-sexta-edicion.compressed.pdf
- Rubio, K., & Rubio, J. (2017). "ALTERNATIVAS DE DISEÑO DE HORMIGONES FLUIDOS, ESTABLES Y DE ALTA RESISTENCIA PARA DIFERENTES PROBLEMAS EN LA. Obtenido de "ALTERNATIVAS DE DISEÑO DE

- HORMIGONES FLUIDOS, ESTABLES Y DE ALTA RESISTENCIA PARA DIFERENTES PROBLEMAS EN LA: https://www.dspace.espol.edu.ec/retrieve/99749/D-CD70221.pdf
- UNION CEMENTERA NACIONAL. (2022). Obtenido de https://www.ucem.com.ec/categoria-producto/cemento-chimborazo/
- Universidad Laica Vicente Rocafuerte de Guayaquil. (2019). Obtenido de https://www.ulvr.edu.ec/static/uploads/pdf/file_1556661631.pdf
- Universidad Laica Vicente Rocafuerte de Guayaquil. (14 de Septiembre de 2021). Unidad de Titulación 2021. Obtenido de Unidad de Titulación 2021: https://www.ulvr.edu.ec/academico/unidad-de-titulacion/proyecto-de-investigacion
- Urrelo, L., & Troya, D. (2020). Filtros de cáscara de coco y cascarilla de arroz, una revisión en el tratamiento de aguas residuales de lavaderos de vehículos. Obtenido de Filtros de cáscara de coco y cascarilla de arroz, una revisión en el tratamiento de aguas residuales de lavaderos de vehículos.: https://repositorio.upeu.edu.pe/bitstream/handle/20.500.12840/3235/Liz_Trabajo_Bac hillerato_2020.pdf?sequence=5&isAllowed=y
- Vidaud, E. (2013). De la historia del cemento. Obtenido de De la historia del cemento: http://www.revistacyt.com.mx/pdf/noviembre2013/ingenieria.pdf
- Villa, K., Echeverria, C., & Blessent, D. (2019). Wood walls insulated with coconut fiber•.

 Obtenido de Wood walls insulated with coconut fiber•:

 https://www.redalyc.org/jatsRepo/496/49662789042/49662789042.pdf

8 ANEXOS

Anexo 1 Vía Puerto Pechiche y cruce a Vinces – Mocache, se reconoce la falta de mantenimiento de la carretera, y se denota en varios tramos con baches, piel de cocodrilo, hundimiento de la capa de rodadura, y carencia de asfalto.

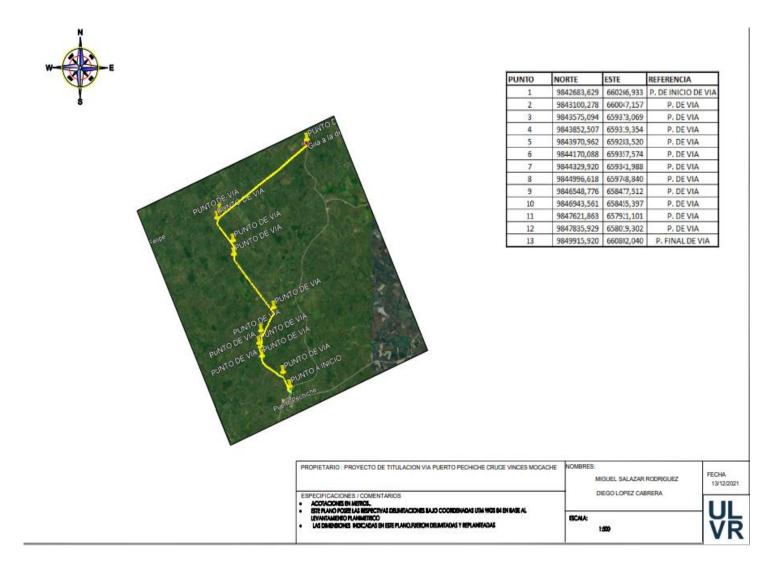
Anexo 2 Levantamiento topográfico planímetrico de la vía utilizando la estación total.

Anexo 3 Finalizacion de la carpeta asfáltica debido a la falta de mantenimiento.

Anexo 4 Conteo vehicular manual durante un periodo de doce horas durante siete días seguidos.

Anexo 5 Conteo vehicular en el término de la vía Puerto Pechiche y cruce a Vinces – Mocache.

Anexo 6 Inicio de la vía.


Anexo 7 Prisma para levantamiento topográfico.

Anexo 8 Punto de cambio.

Anexo 9 Plano topográfico de la vía puerto pechiche y cruce a Vinces – Mocache.

Anexo 10 Proceso de clasificación granulométrica.

Anexo 11 Clasificación granulométrica de acuerdo a los números y porcentajes basados en las normas AASHTO 93.

Anexo 12 Briquetas asfálticas con sus diferentes porcentajes de asfalto.

Anexo 13 Dispositivo de estabilidad.

